Unknown

Dataset Information

0

Empirical evaluation of a new method for calculating signal-to-noise ratio for microarray data analysis.


ABSTRACT: Signal-to-noise-ratio (SNR) thresholds for microarray data analysis were experimentally determined with an oligonucleotide array that contained perfect-match (PM) and mismatch (MM) probes based upon four genes from Shewanella oneidensis MR-1. A new SNR calculation, called the signal-to-both-standard-deviations ratio (SSDR), was developed and evaluated, along with other two methods, the signal-to-standard-deviation ratio (SSR) and the signal-to-background ratio (SBR). At a low stringency, the thresholds of the SSR, SBR, and SSDR were 2.5, 1.60, and 0.80 with an oligonucleotide and a PCR amplicon as target templates and 2.0, 1.60, and 0.70 with genomic DNAs as target templates. Slightly higher thresholds were obtained under high-stringency conditions. The thresholds of the SSR and SSDR decreased with an increase in the complexity of targets (e.g., target types) and the presence of background DNA and a decrease in the compositions of targets, while the SBR remained unchanged in all situations. The lowest percentage of false positives and false negatives was observed with the SSDR calculation method, suggesting that it may be a better SNR calculation for more accurate determination of SNR thresholds. Positive spots identified by SNR thresholds were verified by the Student t test, and consistent results were observed. This study provides general guidance for users to select appropriate SNR thresholds for different samples under different hybridization conditions.

SUBMITTER: He Z 

PROVIDER: S-EPMC2394959 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

| S-EPMC10128961 | biostudies-literature
| S-EPMC5939967 | biostudies-literature
| S-EPMC3520972 | biostudies-literature
| S-EPMC524279 | biostudies-literature
| S-EPMC3893312 | biostudies-literature
| S-EPMC7192629 | biostudies-literature
| S-EPMC4466709 | biostudies-literature
| S-EPMC3039683 | biostudies-literature
| S-EPMC10174484 | biostudies-literature
| S-EPMC5964166 | biostudies-literature