ABSTRACT: We previously demonstrated that Streptococcus oligofermentans suppressed the growth of Streptococcus mutans, the primary cariogenic pathogen, by producing hydrogen peroxide (H(2)O(2)) through lactate oxidase activity. In this study, we found that the lox mutant of S. oligofermentans regained the inhibition while growing on peptone-rich plates. Further studies demonstrated that the H(2)O(2) produced on peptone by S. oligofermentans was mainly derived from seven L-amino acids, i.e., L-aspartic acid, L-tryptophan, L-lysine, L-isoleucine, L-arginine, L-asparagine, and L-glutamine, indicating the possible existence of L-amino acid oxidase (LAAO) that can produce H(2)O(2) from L-amino acids. Through searching the S. oligofermentans genome for open reading frames with a conserved flavin adenine dinucleotide binding motif that exists in the known LAAOs, including those of snake venom, fungi, and bacteria, a putative LAAO gene, assigned as aao(So), was cloned and overexpressed in Escherichia coli. The purified protein, SO-LAAO, showed a molecular mass of 43 kDa in sodium dodecyl sulfate-polyacrylamide gel electrophoresis and catalyzed H(2)O(2) formation from the seven L-amino acids determined above, thus confirming its LAAO activity. The SO-LAAO identified in S. oligofermentans differed evidently from the known LAAOs in both substrate profile and sequence, suggesting that it could represent a novel LAAO. An aao(So) mutant of S. oligofermentans did lose H(2)O(2) formation from the seven L-amino acids, further verifying its function as an LAAO. Furthermore, the inhibition by S. oligofermentans of S. mutans in a peptone-rich mixed-species biofilm was greatly reduced for the aao(So) mutant, indicating the gene's importance in interspecies competition.