ABSTRACT: Interest centers here on the analysis of two different, but related, phenomena that affect side-chain conformations and consequently 13C(alpha) chemical shifts and their applications to determine, refine, and validate protein structures. The first is whether 13C(alpha) chemical shifts, computed at the DFT level of approximation with charged residues is a better approximation of observed 13C(alpha) chemical shifts than those computed with neutral residues for proteins in solution. Accurate computation of 13C(alpha) chemical shifts requires a proper representation of the charges, which might not take on integral values. For this analysis, the charges for 139 conformations of the protein ubiquitin were determined by explicit consideration of protein binding equilibria, at a given pH, that is, by exploring the 2(xi) possible ionization states of the whole molecule, with xi being the number of ionizable groups. The results of this analysis, as revealed by the shielding/deshielding of the 13C(alpha) nucleus, indicated that: (i) there is a significant difference in the computed 13C(alpha) chemical shifts, between basic and acidic groups, as a function of the degree of charge of the side chain; (ii) this difference is attributed to the distance between the ionizable groups and the 13C(alpha) nucleus, which is shorter for the acidic Asp and Glu groups as compared with that for the basic Lys and Arg groups; and (iii) the use of neutral, rather than charged, basic and acidic groups is a better approximation of the observed 13C(alpha) chemical shifts of a protein in solution. The second is how side-chain flexibility influences computed 13C(alpha) chemical shifts in an additional set of ubiquitin conformations, in which the side chains are generated from an NMR-derived structure with the backbone conformation assumed to be fixed. The 13C(alpha) chemical shift of a given amino acid residue in a protein is determined, mainly, by its own backbone and side-chain torsional angles, independent of the neighboring residues; the conformation of a given residue itself, however, depends on the environment of this residue and, hence, on the whole protein structure. As a consequence, this analysis reveals the role and impact of an accurate side-chain computation in the determination and refinement of protein conformation. The results of this analysis are: (i) a lower error between computed and observed 13C(alpha) chemical shifts (by up to 3.7 ppm), was found for approximately 68% and approximately 63% of all ionizable residues and all non-Ala/Pro/Gly residues, respectively, in the additional set of conformations, compared with results for the model from which the set was derived; and (ii) all the additional conformations exhibit a lower root-mean-square-deviation (1.97 ppm < or = rmsd < or = 2.13 ppm), between computed and observed 13C(alpha) chemical shifts, than the rmsd (2.32 ppm) computed for the starting conformation from which this additional set was derived. As a validation test, an analysis of the additional set of ubiquitin conformations, comparing computed and observed values of both 13C(alpha) chemical shifts and chi(1) torsional angles (given by the vicinal coupling constants, 3J(N-Cgamma) and 3J(C'-Cgamma), is discussed.