Unknown

Dataset Information

0

Regio- and chemoselective covalent immobilization of proteins through unnatural amino acids.


ABSTRACT: A general approach was developed for the regio- and chemoselective covalent immobilization of soluble proteins on glass surfaces through an unnatural amino acid created by post-translationally modifying the cysteine residue in a CaaX recognition motif with functional groups suitable for "click" chemistry or a Staudinger ligation. Farnesyl diphosphate analogues bearing omega-azide or omega-alkyne moieties were attached to the cysteine residue in Cys-Val-Ile-Ala motifs at the C-termini of engineered versions of green fluorescent protein (GFP) and glutathione S-transferase (GST) by protein farnesyltransferase. The derivatized proteins were attached to glass slides bearing linkers containing azide ("click" chemistry) or phosphine (Staudinger ligation) groups. "Click"-immobilized proteins were detected by fluorescently labeled antibodies and remained attached to the slide through two cycles of stripping under stringent conditions at 80 degrees C. GFP immobilized by a Staudinger ligation was detected by directly imagining the GFP fluorophore over a period of 6 days. These methods for covalent immobilization of proteins should be generally applicable. CaaX recognition motifs can easily be appended to the C-terminus of a cloned protein by a simple modification of the corresponding gene, and virtually any soluble protein or peptide bearing a CaaX motif is a substrate for protein farnesyltransferase.

SUBMITTER: Gauchet C 

PROVIDER: S-EPMC2516943 | biostudies-literature | 2006 Jul

REPOSITORIES: biostudies-literature

altmetric image

Publications

Regio- and chemoselective covalent immobilization of proteins through unnatural amino acids.

Gauchet Cécile C   Labadie Guillermo R GR   Poulter C Dale CD  

Journal of the American Chemical Society 20060701 29


A general approach was developed for the regio- and chemoselective covalent immobilization of soluble proteins on glass surfaces through an unnatural amino acid created by post-translationally modifying the cysteine residue in a CaaX recognition motif with functional groups suitable for "click" chemistry or a Staudinger ligation. Farnesyl diphosphate analogues bearing omega-azide or omega-alkyne moieties were attached to the cysteine residue in Cys-Val-Ile-Ala motifs at the C-termini of engineer  ...[more]

Similar Datasets

| S-EPMC3983139 | biostudies-literature
| S-EPMC3882359 | biostudies-literature
| S-EPMC2825273 | biostudies-literature
| S-EPMC5356931 | biostudies-literature
| S-EPMC7293202 | biostudies-literature
| S-EPMC1482635 | biostudies-literature
| S-EPMC2941765 | biostudies-literature
| S-EPMC6481062 | biostudies-literature