Unknown

Dataset Information

0

Purification and characterization of the FeII- and alpha-ketoglutarate-dependent xanthine hydroxylase from Aspergillus nidulans.


ABSTRACT: His6-tagged xanthine/alpha-ketoglutarate (alphaKG) dioxygenase (XanA) of Aspergillus nidulans was purified from both the fungal mycelium and recombinant Escherichia coli cells, and the properties of the two forms of the protein were compared. Evidence was obtained for both N- and O-linked glycosylation on the fungus-derived XanA, which aggregates into an apparent dodecamer, while bacterium-derived XanA is free of glycosylation and behaves as a monomer. Immunological methods identify phosphothreonine in both forms of XanA, with phosphoserine also detected in the bacterium-derived protein. Mass spectrometric analysis confirms glycosylation and phosphorylation of the fungus-derived sample, which also undergoes extensive truncation at its amino terminus. Despite the major differences in the properties of these proteins, their kinetic parameters are similar (kcat = 30-70 s-1, Km of alphaKG = 31-50 muM, Km of xanthine approximately 45 muM, and pH optima at 7.0-7.4). The enzyme exhibits no significant isotope effect when [8-2H]xanthine is used; however, it demonstrates a 2-fold solvent deuterium isotope effect. CuII and ZnII potently inhibit the FeII-specific enzyme, whereas CoII, MnII, and NiII are weaker inhibitors. NaCl decreases the kcat and increases the Km of both alphaKG and xanthine. The alphaKG cosubstrate can be substituted with alpha-ketoadipate (9-fold decrease in kcat and 5-fold increase in the Km compared to those of the normal alpha-keto acid), while the alphaKG analogue N-oxalylglycine is a competitive inhibitor (Ki = 0.12 muM). No alternative purines effectively substitute for xanthine as a substrate, and only one purine analogue (6,8-dihydroxypurine) results in significant inhibition. Quenching of the endogenous fluorescence of the two enzyme forms by xanthine, alphaKG, and DHP was used to characterize their binding properties. A XanA homology model was generated on the basis of the structure of the related enzyme TauD (PDB entry 1OS7) and provided insights into the sites of posttranslational modification and substrate binding. These studies represent the first biochemical characterization of purified xanthine/alphaKG dioxygenase.

SUBMITTER: Montero-Moran GM 

PROVIDER: S-EPMC2525507 | biostudies-literature | 2007 May

REPOSITORIES: biostudies-literature

altmetric image

Publications

Purification and characterization of the FeII- and alpha-ketoglutarate-dependent xanthine hydroxylase from Aspergillus nidulans.

Montero-Morán Gabriela M GM   Li Meng M   Rendòn-Huerta Erika E   Jourdan Fabrice F   Lowe David J DJ   Stumpff-Kane Andrew W AW   Feig Michael M   Scazzocchio Claudio C   Hausinger Robert P RP  

Biochemistry 20070413 18


His6-tagged xanthine/alpha-ketoglutarate (alphaKG) dioxygenase (XanA) of Aspergillus nidulans was purified from both the fungal mycelium and recombinant Escherichia coli cells, and the properties of the two forms of the protein were compared. Evidence was obtained for both N- and O-linked glycosylation on the fungus-derived XanA, which aggregates into an apparent dodecamer, while bacterium-derived XanA is free of glycosylation and behaves as a monomer. Immunological methods identify phosphothreo  ...[more]

Similar Datasets

| S-EPMC1489315 | biostudies-literature
| S-EPMC4091617 | biostudies-literature
| S-EPMC1144610 | biostudies-other
| S-EPMC7139513 | biostudies-literature
| S-EPMC2849234 | biostudies-literature
| S-EPMC123785 | biostudies-literature
| S-EPMC1828918 | biostudies-literature
| S-EPMC7961094 | biostudies-literature
| S-EPMC8592254 | biostudies-literature
| S-EPMC1456305 | biostudies-literature