Project description:Kibdelones are hexacyclic tetrahydroxanthones and potent anticancer agents isolated from an Australian microbe. Herein, we describe the synthesis of a chiral, nonracemic iodocyclohexene carboxylate EF ring fragment of the kibdelones employing an intramolecular iodo halo-Michael aldol reaction and its merger with an ABCD ring fragment to afford the congener kibdelone C.
Project description:Total synthesis of structure 1 originally proposed for brevenal, a nontoxic polycyclic ether natural product isolated from the Florida red tide dinoflagellate, Karenia brevis, was accomplished. The key features of the synthesis involved (i) convergent assembly of the pentacyclic polyether skeleton based on our developed Suzuki-Miyaura coupling chemistry and (ii) stereoselective construction of the multi-substituted (E,E)-dienal side chain by using copper(I) thiophen-2-carboxylate (CuTC)-promoted modified Stille coupling. The disparity of NMR spectra between the synthetic material and the natural product required a revision of the proposed structure. Detailed spectroscopic comparison of synthetic 1 with natural brevenal, coupled with the postulated biosynthetic pathway for marine polyether natural products, suggested that the natural product was most likely represented by 2, the C26 epimer of the proposed structure 1. The revised structure was finally validated by completing the first total synthesis of (-)-2, which also unambiguously established the absolute configuration of the natural product.
Project description:The synthesis and absolute configuration of SCH 351448, an interesting ionophoric natural product, are reported herein. Mukaiyama aldol-Prins and segment-coupling Prins reactions were employed to construct the constituent tetrahydropyrans of SCH 351448. Efforts to assemble the C2-symmetric core of the natural product by a templated olefin metathesis strategy are described; however, a stepwise fragment assembly was ultimately utilized to complete the target molecule.
Project description:An-T-biotic: The first total synthesis of the T-shaped bisanthraquinone natural product BE-43472B was accomplished and its absolute configuration assigned. Key transformations in the pivotal cascade sequence include a Diels-Alder reaction, a hemiketal formation, and a nucleophilic aromatic ipso substitution.
Project description:A total synthesis of phostriecin (2), previously known as sultriecin (1), its structural reassignment as a phosphate versus sulfate monoester, and the assignment of its relative and absolute stereochemistry are disclosed herein. Key elements of the work, which provided first the originally assigned sulfate monoester 1 and then the reassigned and renamed phosphate monoester 2, relied on diagnostic (1)H NMR spectroscopic properties of the natural product for the assignment of relative and absolute stereochemistry as well as the subsequent structural reassignment, and a convergent asymmetric total synthesis to provide the unequivocal authentic materials. Key steps of the synthetic approach include a Brown allylation for diastereoselective introduction of the C9 stereochemistry, an asymmetric CBS reduction to establish the lactone C5-stereochemistry, diastereoselective oxidative ring expansion of an alpha-hydroxyfuran to access the pyran lactone precursor, and single-step installation of the sensitive Z,Z,E-triene unit through a chelation-controlled cuprate addition with installation of the C11 stereochemistry. The approach allows ready access to analogues that can now be used to probe important structural features required for protein phosphatase 2A inhibition, the mechanism of action defined herein.
Project description:We report the first total synthesis of four possible absolute configurations and four other regional isomers of a naturally occurring alkaloid crotonine, which was isolated from Croton tiglium L. (Euphoriaceae) without elucidation of its absolute configuration. The concise five-step route with a chirally poor and regioselective strategy starting from monosaccharides was established, and the absolute structure of the natural crotonine was determined by comparison of the NMR spectra and optical rotations of the synthetic products. Electronic Supplementary Material Supplementary material is available for this article at 10.1007/s13659-013-0080-1 and is accessible for authorized users.
Project description:A full account of studies that culminated in the total synthesis of both antipodes and the assignment of its absolute configuration of Saudin, a hypoglycemic natural product. Two approaches are described, the first proceeding though bicyclic lactone intermediates and related second monocyclic esters. The former was obtained via asymmetric Diels-Alder cycloaddition and the latter by an asymmetric annulation protocol. Both approaches employ a Lewis acid promoted Claisen rearrangement, with the successful approach taking advantage of bidentate chelation to control the facial selectivity of the key Claisen rearrangement.
Project description:The absolute stereo structure of the natural product laurenditerpenol (1S, 6R, 7S, 10R, 11R, 14S, 15R) has been accomplished from eight plausible stereoisomers by its first asymmetric total synthesis in a highly convergent and flexible synthetic pathway. Six stereoisomers of laurenditerpenol were synthesized and evaluated for their biological activity.
Project description:The asymmetric total synthesis of the polyprenylated acylphloroglucinol hyperibone K has been achieved using an enantioselective alkylative dearomatization-annulation process. NMR and computational studies were employed to probe the mode of action of a chiral phase-transfer (ion pair) catalyst.
Project description:The asymmetric total synthesis of four diastereomers of laingolide A was achieved, which led to the unambiguous assignment of the stereochemistry of the natural product. The salient features of the convergent, fully stereocontrolled approach were a copper-catalysed stereospecific Kumada-type coupling, a Julia-Kocienski olefination and an RCM/alkene migration sequence to access the desired macrocyclic enamide.