State-dependent cAMP sensitivity of presynaptic function underlies metaplasticity in a hippocampal feedforward inhibitory circuit.
Ontology highlight
ABSTRACT: At hippocampal mossy fiber (MF)-st. lucidum interneuron (SLIN) synapses, mGluR7 serves as a metaplastic switch controlling bidirectional plasticity. mGluR7 activation during high-frequency stimulation (HFS) triggers presynaptic LTD due to persistent P/Q-type Ca(2+) channel inhibition. However, following mGluR7 internalization HFS produces presynaptic LTP. Surprisingly, LTP is not a simple molecular reversal of Ca(2+) channel depression. Rather, mGluR7 activation/internalization controls plasticity polarity by gating cAMP sensitivity of release. While naive surface mGluR7 expressing MF-SLIN synapses are insensitive to cAMP elevation, synapses that have internalized mGluR7 robustly potentiate following cAMP increases. Moreover, MF-SLIN LTP requires adenylate cyclase (AC) and protein kinase A (PKA) activities. We also discovered an association between mGluR7 and RIM1alpha, an active zone molecule required for AC/PKA-dependent presynaptic LTP. Importantly, the mGluR7-RIM1alpha interaction is regulated by mGluR7 activation, and mice lacking RIM1alpha are deficient in MF-SLIN LTP. We conclude that state-dependent cAMP sensitivity controlled by mGluR7-RIM1alpha interactions underlies MF-SLIN metaplasticity.
SUBMITTER: Pelkey KA
PROVIDER: S-EPMC2630456 | biostudies-literature | 2008 Dec
REPOSITORIES: biostudies-literature
ACCESS DATA