Ontology highlight
ABSTRACT: Objective
Regulatory T-cells (Tregs) have catalyzed the field of immune regulation. However, translating Treg-based therapies from animal models of autoimmunity to human clinical trials requires robust methods for the isolation and expansion of these cells-a need forming the basis for these studies.Research design and methods
Tregs from recent-onset type 1 diabetic patients and healthy control subjects were isolated by fluorescence-activated cell sorting and compared for their capacity to expand in vitro in response to anti-CD3-anti-CD28-coated microbeads and IL-2. Expanded cells were examined for suppressive function, lineage markers and FOXP3, and cytokine production.Results
Both CD4+CD127(lo/-) and CD4+CD127(lo/-)CD25+ T-cells could be expanded and used as Tregs. However, expansion of CD4+CD127(lo/-) cells required the addition of rapamycin to maintain lineage purity. In contrast, expansion of CD4+CD127(lo/-)CD25+ T-cells, especially the CD45RA+ subset, resulted in high yield, functional Tregs that maintained higher FOXP3 expression in the absence of rapamycin. Tregs from type 1 diabetic patients and control subjects expanded similarly and were equally capable of suppressing T-cell proliferation. Regulatory cytokines were produced by Tregs after culture; however, a portion of FOXP3+ cells were capable of producing interferon (IFN)-gamma after reactivation. IFN-gamma production was observed from both CD45RO+ and CD45RA+ Treg populations.Conclusions
The results support the feasibility of isolating Tregs for in vitro expansion. Based on expansion capacity, FOXP3 stability, and functional properties, the CD4+CD127(lo/-)CD25+ T-cells represent a viable cell population for cellular therapy in this autoimmune disease.
SUBMITTER: Putnam AL
PROVIDER: S-EPMC2646064 | biostudies-literature | 2009 Mar
REPOSITORIES: biostudies-literature
Putnam Amy L AL Brusko Todd M TM Lee Michael R MR Liu Weihong W Szot Gregory L GL Ghosh Taumoha T Atkinson Mark A MA Bluestone Jeffrey A JA
Diabetes 20081215 3
<h4>Objective</h4>Regulatory T-cells (Tregs) have catalyzed the field of immune regulation. However, translating Treg-based therapies from animal models of autoimmunity to human clinical trials requires robust methods for the isolation and expansion of these cells-a need forming the basis for these studies.<h4>Research design and methods</h4>Tregs from recent-onset type 1 diabetic patients and healthy control subjects were isolated by fluorescence-activated cell sorting and compared for their ca ...[more]