Activation of ribosomal RNA transcription by hepatitis C virus involves upstream binding factor phosphorylation via induction of cyclin D1.
Ontology highlight
ABSTRACT: Hepatitis C virus (HCV) causes chronic infection in humans leading to liver cirrhosis and hepatocellular carcinoma. rRNA transcription, catalyzed by RNA polymerase I (Pol I), plays a critical role in ribosome biogenesis, and changes in Pol I transcription rate are associated with profound alterations in the growth rate of the cell. Because rRNA synthesis is intimately linked to cell growth and frequently up-regulated in many cancers, we hypothesized that HCV might have the ability to activate rRNA synthesis in infected cells. We show here that rRNA promoter-mediated transcription is significantly (10- to 12-fold) activated in human liver-derived cells following infection with type 2 JFH-1 HCV or transfection with the subgenomic type 1 HCV replicon. Further analysis revealed that HCV nonstructural protein 5A (NS5A) was responsible for activation of rRNA transcription. Both the NH(2)-terminal amphipathic helix and the polyproline motifs of NS5A seem to be essential for rRNA transcription activation. The NS5A-dependent activation of rRNA transcription seems to be due to hyperphosphorylation and consequent activation of upstream binding factor (UBF), a Pol I DNA binding transcription factor. We further show that hyperphosphorylation of UBF occurs as a result of up-regulation of both cyclin D1 and cyclin-dependent kinase 4 by the HCV NS5A polypeptide. These results suggest that the endoplasmic reticulum-associated NS5A is able to transduce signals into the nucleoplasm via UBF hyperphosphorylation leading to rRNA transcription activation. These results could, at least in part, explain a mechanism by which HCV contributes to transformation of liver cells.
SUBMITTER: Raychaudhuri S
PROVIDER: S-EPMC2650774 | biostudies-literature | 2009 Mar
REPOSITORIES: biostudies-literature
ACCESS DATA