Unknown

Dataset Information

0

Structure of mouse IP-10, a chemokine.


ABSTRACT: Interferon-gamma-inducible protein (IP-10) belongs to the CXC class of chemokines and plays a significant role in the pathophysiology of various immune and inflammatory responses. It is also a potent angiostatic factor with antifibrotic properties. The biological activities of IP-10 are exerted by interactions with the G-protein-coupled receptor CXCR3 expressed on Th1 lymphocytes. IP-10 thus forms an attractive target for structure-based rational drug design of anti-inflammatory molecules. The crystal structure of mouse IP-10 has been determined and reveals a novel tetrameric association. In the tetramer, two conventional CXC chemokine dimers are associated through their N-terminal regions to form a 12-stranded elongated beta-sheet of approximately 90 A in length. This association differs significantly from the previously studied tetramers of human IP-10, platelet factor 4 and neutrophil-activating peptide-2. In addition, heparin- and receptor-binding residues were mapped on the surface of IP-10 tetramer. Two heparin-binding sites were observed on the surface and were present at the interface of each of the two beta-sheet dimers. The structure supports the formation of higher order oligomers of IP-10, as observed in recent in vivo studies with mouse IP-10, which will have functional relevance.

SUBMITTER: Jabeen T 

PROVIDER: S-EPMC2665906 | biostudies-literature | 2008 Jun

REPOSITORIES: biostudies-literature

altmetric image

Publications

Structure of mouse IP-10, a chemokine.

Jabeen Talat T   Leonard Philip P   Jamaluddin Haryati H   Acharya K Ravi KR  

Acta crystallographica. Section D, Biological crystallography 20080514 Pt 6


Interferon-gamma-inducible protein (IP-10) belongs to the CXC class of chemokines and plays a significant role in the pathophysiology of various immune and inflammatory responses. It is also a potent angiostatic factor with antifibrotic properties. The biological activities of IP-10 are exerted by interactions with the G-protein-coupled receptor CXCR3 expressed on Th1 lymphocytes. IP-10 thus forms an attractive target for structure-based rational drug design of anti-inflammatory molecules. The c  ...[more]

Similar Datasets

| S-EPMC7124215 | biostudies-literature
| S-EPMC10326041 | biostudies-literature
| S-EPMC111907 | biostudies-literature
| S-EPMC3397949 | biostudies-literature
| S-EPMC3062568 | biostudies-literature
| S-EPMC7117698 | biostudies-literature
| S-EPMC2723158 | biostudies-literature
| S-EPMC6822474 | biostudies-literature
| S-EPMC9181282 | biostudies-literature
| S-EPMC3457728 | biostudies-literature