Unknown

Dataset Information

0

Evolutionary insights into the unique electromotility motor of mammalian outer hair cells.


ABSTRACT: Prestin (SLC26A5) is the molecular motor responsible for cochlear amplification by mammalian cochlea outer hair cells and has the unique combined properties of energy-independent motility, voltage sensitivity, and speed of cellular shape change. The ion transporter capability, typical of SLC26A members, was exchanged for electromotility function and is a newly derived feature of the therian cochlea. A putative minimal essential motif for the electromotility motor (meEM) was identified through the amalgamation of comparative genomic, evolution, and structural diversification approaches. Comparisons were done among nonmammalian vertebrates, eutherian mammalian species, and the opossum and platypus. The opossum and platypus SLC26A5 proteins were comparable to the eutherian consensus sequence. Suggested from the point-accepted mutation analysis, the meEM motif spans all the transmembrane segments and represented residues 66-503. Within the eutherian clade, the meEM was highly conserved with a substitution frequency of only 39/7497 (0.5%) residues, compared with 5.7% in SLC26A4 and 12.8% in SLC26A6 genes. Clade-specific substitutions were not observed and there was no sequence correlation with low or high hearing frequency specialists. We were able to identify that within the highly conserved meEM motif two regions, which are unique to all therian species, appear to be the most derived features in the SLC26A5 peptide.

SUBMITTER: Okoruwa OE 

PROVIDER: S-EPMC2666851 | biostudies-literature | 2008 May-Jun

REPOSITORIES: biostudies-literature

altmetric image

Publications

Evolutionary insights into the unique electromotility motor of mammalian outer hair cells.

Okoruwa Oseremen E OE   Weston Michael D MD   Sanjeevi Divvya C DC   Millemon Amanda R AR   Fritzsch Bernd B   Hallworth Richard R   Beisel Kirk W KW  

Evolution & development 20080501 3


Prestin (SLC26A5) is the molecular motor responsible for cochlear amplification by mammalian cochlea outer hair cells and has the unique combined properties of energy-independent motility, voltage sensitivity, and speed of cellular shape change. The ion transporter capability, typical of SLC26A members, was exchanged for electromotility function and is a newly derived feature of the therian cochlea. A putative minimal essential motif for the electromotility motor (meEM) was identified through th  ...[more]

Similar Datasets

| S-EPMC10699807 | biostudies-literature
| S-EPMC3274794 | biostudies-literature
| S-EPMC6888751 | biostudies-literature
| S-EPMC31199 | biostudies-literature
| S-EPMC3038748 | biostudies-literature
| S-EPMC2679373 | biostudies-literature
| S-EPMC1941505 | biostudies-literature
| S-EPMC2435065 | biostudies-literature
2023-12-06 | PXD046965 | Pride
| S-EPMC2661972 | biostudies-literature