Project description:The pathogenesis of multiple sclerosis (MS) remains to be elucidated. Pediatric-onset MS (POMS) represents the earliest stage of the disease. CSF proteins in POMS may therefore provide causal information. Therefore, the aim of the current study was to analyze CSF proteins in children with an initial CNS acquired demyelinating syndrome (ADS) and to make a comparison between POMS and monophasic ADS (mADS). Patients were selected from two prospective pediatric ADS studies. Liquid chromatography-mass spectrometry was performed in a Dutch discovery cohort (POMS n=28; mADS n=39). Parallel reaction monitoring-mass spectrometry was performed on selected proteins more abundant in POMS with ≥ 8 unique peptides in a combined Dutch and Canadian validation cohort (POMS n=48; mADS n=106).
Project description:The pathogenesis of multiple sclerosis (MS) remains to be elucidated. Pediatric-onset MS (POMS) represents the earliest stage of the disease. CSF proteins in POMS may therefore provide causal information. Therefore, the aim of the current study was to analyze CSF proteins in children with an initial CNS acquired demyelinating syndrome (ADS) and to make a comparison between POMS and monophasic ADS (mADS). Patients were selected from two prospective pediatric ADS studies. Liquid chromatography-mass spectrometry was performed in a Dutch discovery cohort (POMS n=28; mADS n=39). Parallel reaction monitoring-mass spectrometry was performed on selected proteins more abundant in POMS with ≥ 8 unique peptides in a combined Dutch and Canadian validation cohort (POMS n=48; mADS n=106).
Project description:BackgroundKnowledge on immunity after SARS-CoV-2 infection in patients with multiple sclerosis (pwMS) and the impact of disease-modifying treatment (DMT) is limited.ObjectiveTo evaluate degree, duration and potential predictors of specific humoral immune response in pwMS with prior COVID-19.MethodsAnti-SARS-CoV-2 antibody testing was performed in pwMS with PCR-confirmed diagnosis of symptomatic COVID-19 from a nation-wide registry. Predictors of seropositivity were identified by multivariate regression models.ResultsIn 125 pwMS (mean age = 42.4 years (SD = 12.3 years), 70% female), anti-SARS-CoV-2 antibodies were detected in 76.0% after a median of 5.2 months from positive PCR. Seropositivity rate was significantly lower in patients on IS-DMT (61.4%, p = 0.001) than without DMT or immunomodulatory DMT (80.6%; 86.0%, respectively). In multivariate analysis, IS-DMT was associated with reduced probability of seropositivity (odds ratio (OR): 0.51; 95% confidence interval (95% CI): 0.17-0.82; p < 0.001). Predefined subgroup analyses showed marked reduction of seropositivity in pwMS on rituximab/ocrelizumab (OR 0.15; 95% CI: 0.05-0.56; p < 0.001). Rate of seropositivity did not change significantly over 6 months.ConclusionsHumoral immunity is stable after SARS-CoV-2 infection in MS, but is reduced by immunosuppressive DMT, particularly anti-CD20 monoclonal antibodies. This provides important evidence for advising pwMS as well as for planning and prioritizing vaccination.
Project description:BackgroundEvidence suggests that Epstein-Barr virus (EBV) plays a role in triggering or perpetuating disease activity in multiple sclerosis (MS).MethodsWe investigated 100 subjects (50 clinically isolated syndrome [CIS], 25 relapsing-remitting [RR] MS, 25 primary progressive [PP] MS) for 1) evidence of EBV reactivation and 2) disease activity as indicated by serial gadolinium (Gd)-enhanced MRIs over a 5-year period. EBV DNA in blood was quantified by real-time quantitative PCR and EBV serology for anti-Epstein-Barr virus nuclear antigen 1 (EBNA-1) immunoglobulin G (IgG), anti-viral capsid antigen (VCA) IgG, and anti-EBV IgM. Data were analyzed using repeated measures analysis, analysis of variance, and logistic regression analysis.ResultsAll subjects had serologic evidence of previous EBV infection, but no lytic reactivation was detected. Significant differences in EBNA-1 IgG titers were found between subgroups, highest in the RRMS cohort compared with PPMS (p < 0.001) and CIS (p < 0.001). Gd-enhancing lesions on MRI correlated with EBNA-1 IgG (r = 0.33, p < 0.001) and EBNA-1:VCA IgG ratio (r = 0.36, p < 0.001). EBNA-1 IgG also correlated with change in T2 lesion volume (r = 0.27, p = 0.044) and Expanded Disability Status Scale score (r = 0.3, p = 0.035).ConclusionsThe correlation between elevated Epstein-Barr virus nuclear antigen 1 (EBNA-1) immunoglobulin G (IgG) and gadolinium-enhancing lesions suggests an association between Epstein-Barr virus (EBV) infection and multiple sclerosis (MS) disease activity. The heightened immune response to EBV in MS is specifically related to EBNA-1 IgG, a marker of the latent phase of the virus. The lack of association between acute viral reactivation in the peripheral blood and Gd(+) lesions suggests a limited role of the former in driving disease activity.
Project description:The continuous improvements of our understanding of the pathophysiological changes that occur in multiple sclerosis (MS) have translated into many novel therapeutic agents at different stages of development. These agents target more specifically the innate or the adaptive immune response. We will review agents available or under development that target the humoral pathways of the adaptive immune response. As such, humoral targeted immunotherapies that are being developed for MS are discussed herein: rituximab, ocrelizumab, and ofatumumab show promise as B-cell depleting agents. Other agents, such as atacicept were suspended during development in MS due to increased inflammatory activity versus the placebo. Although most agents were tested in relapsing-remitting forms of MS, rituximab and ocrelizumab have both been studied in progressive MS, whereas ocrelizumab only is currently moving forward in primary progressive MS trials. We provide an overview of agents available and under development that target the humoral response and include their mechanisms of action, safety profiles, and results of clinical trials.
Project description:BackgroundSARS-CoV-2 seroconversion rate after COVID-19 may be influenced by disease-modifying therapies (DMTs) in patients with multiple sclerosis (MS) or neuromyelitis optica spectrum disorders (NMO-SD).ObjectiveTo investigate the seroprevalence and the quantity of SARS-CoV-2 antibodies in a cohort of patients with MS or NMO-SD.MethodsBlood samples were collected in patients diagnosed with COVID-19 between 19 February 2020 and 26 February 2021. SARS-CoV-2 antibody positivity rates and Ig levels (anti-S IgG titre, anti-S IgA index, anti-N IgG index) were compared between DMTs groups. Multivariate logistic and linear regression models were used to estimate the influence of DMTs and other confounding variables on SARS-CoV-2 serological outcomes.Results119 patients (115 MS, 4 NMO, mean age: 43.0 years) were analysed. Overall, seroconversion rate was 80.6% within 5.0 (SD 3.4) months after infection. 20/21 (95.2%) patients without DMT and 66/77 (85.7%) patients on DMTs other than anti-CD20 had at least one SARS-CoV-2 Ig positivity, while this rate decreased to only 10/21 (47.6%) for patients on anti-CD20 (p<0.001). Being on anti-CD20 was associated with a decreased odd of positive serology (OR, 0.07 (95% CI 0.01 to 0.69), p=0.02) independently from time to COVID-19, total IgG level, age, sex and COVID-19 severity. Time between last anti-CD20 infusion and COVID-19 was longer (mean (SD), 3.7 (2.0) months) in seropositive patients compared with seronegative patients (mean (SD), 1.9 (1.5) months, p=0.04).ConclusionsSARS-CoV-2 antibody response was decreased in patients with MS or NMO-SD treated with anti-CD20 therapies. Monitoring long-term risk of reinfection and specific vaccination strategies in this population may be warranted.Trial registration numberNCT04568707.
Project description:Several works have demonstrated the existence of a link between Mycobacterium avium subsp. paratuberculosis (MAP) and MS in Italy. In this study, we analyzed the serology of MAP in a Japanese population while looking at several markers of MAP. Fifty MS patients, 12 clinically isolated syndrome (CIS) patients, 30 other neurological disorders (OND) patients, and 50 healthy controls (HCs) were tested using ELISA for the presence of IgG antibodies toward immunodominant epitopes MAP_0106c121-132, homologues MBP85-98, homologues IRF5424-432, MAP_402718-32, and MAP_2694295-303. MAP-positive patients were also analyzed in relation to their clinical/demographic characteristics. Amongst all peptides, only antibodies against MAP_2694295-303 were more prevalent in MS patients (30%), as compared to OND patients (3%) (p?=?0.009; area under roc curve (AUC)?=?0.61) and HCs (2%) (p?=?0.0004; AUC?=?0.65) and in CIS patients (25%) compared to HCs (p?=?0.023; AUC?=?0.55). Logistic regression analysis showed a higher frequency of anti-MAP_2694295-303 antibodies in the sera of oligoclonal bands positive MS patients (p?=?0.2; OR?=?2, 95%CI: 0.55-7.7). These findings support the view that MAP could act as a risk factor or a triggering agent of MS in some Japanese patients with a genetic susceptibility to the mycobacterium.
Project description:Some HIV-infected c-ART-suppressed individuals show incomplete CD4+ T-cell recovery, abnormal T-cell activation and higher mortality. One potential source of immune activation could be coinfection with cytomegalovirus (CMV). IgG and IgM levels, immune activation, inflammation and T-cell death in c-ART-suppressed individuals with CD4+ T-cell counts >350 cells/?L (immunoconcordant, n = 133) or <350 cells/?L (immunodiscordant, n = 95) were analyzed to evaluate the effect of CMV humoral response on immune recovery. In total, 27 HIV-uninfected individuals were included as controls. In addition, the presence of CMV IgM antibodies was retrospectively analyzed in 58 immunoconcordant individuals and 66 immunodiscordant individuals. Increased CMV IgG levels were observed in individuals with poor immune reconstitution (p = 0.0002). Increased CMV IgG responses were significantly correlated with lower nadir and absolute CD4+ T-cell counts. In contrast, CMV IgG responses were positively correlated with activation (HLA-DR+) and death markers in CD4+ T-cells and activated memory CD8+ T-cells (CD45RA-CD38+). Longitudinal subanalysis revealed an increased frequency of IgM+ samples in individuals with poor CD4+ T-cell recovery, and an association was observed between retrospective IgM positivity and the current level of IgG. The magnitude of the humoral immune response to CMV is associated with nadir CD4+ T-cell counts, inflammation, immune activation and CD4+ T-cell death, thus suggesting that CMV infection may be a relevant driving force in the increased morbidity/mortality observed in HIV+ individuals with poor CD4+ T-cell recovery.
Project description:BackgroundGut microbiota has been related to multiple sclerosis (MS) etiopathogenesis. Short-chain fatty acids (SCFA) are compounds derived from microbial metabolism that have a role in gut-brain axis.ObjectivesTo analyse SCFA levels in plasma of MS patients and healthy donors (HD), and the possible link between these levels and both clinical data and immune cell populations.MethodsNinety-five MS patients and 54 HD were recruited. Patients were selected according to their score in the Expanded Disability Status Scale (EDSS) (49 EDSS ≤ 1.5, 46 EDSS ≥ 5.0). SCFA were studied in plasma samples by liquid chromatography-mass spectrometry. Peripheral blood mononuclear cells were studied by flow cytometry. Gender, age, treatments, EDSS and Multiple Sclerosis Severity Score (MSSS) were evaluated at the recruitment.ResultsPlasma acetate levels were higher in patients than in HD (p = 0.003). Patients with EDSS ≥ 5.0 had higher acetate levels than those with EDSS≤ 1.5 (p = 0.029), and HD (p = 2.97e-4). Acetate levels correlated with EDSS (r = 0.387; p = 1.08e-4) and MSSS (r = 0.265; p = 0.011). In untreated MS patients, acetate levels correlated inversely with CD4+ naïve T cells (r = - 0.550, p = 0.001) and directly with CD8+ IL-17+ cells (r = 0.557; p = 0.001).ConclusionsPlasma acetate levels are higher in MS patients than in HD. In MS there exists a correlation between plasma acetate levels, EDSS and increased IL-17+ T cells. Future studies will elucidate the role of SCFA in the disease.
Project description:BackgroundThe mRNA vaccines help protect from COVID-19 severity, however multiple sclerosis (MS) disease modifying therapies (DMTs) might affect the development of humoral and T-cell specific response to vaccination.MethodsThe aim of the study was to evaluate humoral and specific T-cell response, as well as B-cell activation and survival factors, in people with MS (pwMS) under DMTs before (T0) and after two months (T1) from the third dose of vaccine, comparing the obtained findings to healthy donors (HD). All possible combinations of intracellular IFNγ, IL2 and TNFα T-cell production were evaluated, and T-cells were labelled "responding T-cells", those cells that produced at least one of the three cytokines of interest, and "triple positive T-cells", those cells that produced simultaneously all the three cytokines.ResultsThe cross-sectional evaluation showed no significant differences in anti-S antibody titers between pwMS and HD at both time-points. In pwMS, lower percentages of responding T-cells at T0 (CD4: p=0.0165; CD8: p=0.0022) and triple positive T-cells at both time-points compared to HD were observed (at T0, CD4: p=0.0007 and CD8: p=0.0703; at T1, CD4: p=0.0422 and CD8: p=0.0535). At T0, pwMS showed higher plasma levels of APRIL, BAFF and CD40L compared to HD (p<0.0001, p<0.0001 and p<0.0001, respectively) and at T1, plasma levels of BAFF were still higher in pwMS compared to HD (p=0.0022).According to DMTs, at both T0 and T1, lower anti-S antibody titers in the depleting/sequestering-out compared to the enriching-in pwMS subgroup were found (p=0.0410 and p=0.0047, respectively) as well as lower percentages of responding CD4+ T-cells (CD4: p=0.0394 and p=0.0004, respectively). Moreover, the depleting/sequestering-out subgroup showed higher percentages of IFNγ-IL2-TNFα+ T-cells at both time-points, compared to the enriching-in subgroup in which a more heterogeneous cytokine profile was observed (at T0 CD4: p=0.0187; at T0 and T1 CD8: p =0.0007 and p =0.0077, respectively).ConclusionIn pwMS, humoral and T-cell response to vaccination seems to be influenced by the different DMTs. pwMS under depleting/sequestering-out treatment can mount cellular responses even in the presence of a low positive humoral response, although the cellular response seems qualitatively inferior compared to HD. An understanding of T-cell quality dynamic is needed to determine the best vaccination strategy and in general the capability of immune response in pwMS under different DMT.