Unknown

Dataset Information

0

Molecular discrimination of structurally equivalent Lys 63-linked and linear polyubiquitin chains.


ABSTRACT: At least eight types of ubiquitin chain exist, and individual linkages affect distinct cellular processes. The only distinguishing feature of differently linked ubiquitin chains is their structure, as polymers of the same unit are chemically identical. Here, we have crystallized Lys 63-linked and linear ubiquitin dimers, revealing that both adopt equivalent open conformations, forming no contacts between ubiquitin molecules and thereby differing significantly from Lys 48-linked ubiquitin chains. We also examined the specificity of various deubiquitinases (DUBs) and ubiquitin-binding domains (UBDs). All analysed DUBs, except CYLD, cleave linear chains less efficiently compared with other chain types, or not at all. Likewise, UBDs can show chain specificity, and are able to select distinct linkages from a ubiquitin chain mixture. We found that the UBAN (ubiquitin binding in ABIN and NEMO) motif of NEMO (NF-kappaB essential modifier) binds to linear chains exclusively, whereas the NZF (Npl4 zinc finger) domain of TAB2 (TAK1 binding protein 2) is Lys 63 specific. Our results highlight remarkable specificity determinants within the ubiquitin system.

SUBMITTER: Komander D 

PROVIDER: S-EPMC2680876 | biostudies-literature | 2009 May

REPOSITORIES: biostudies-literature

altmetric image

Publications

Molecular discrimination of structurally equivalent Lys 63-linked and linear polyubiquitin chains.

Komander David D   Reyes-Turcu Francisca F   Licchesi Julien D F JD   Odenwaelder Peter P   Wilkinson Keith D KD   Barford David D  

EMBO reports 20090417 5


At least eight types of ubiquitin chain exist, and individual linkages affect distinct cellular processes. The only distinguishing feature of differently linked ubiquitin chains is their structure, as polymers of the same unit are chemically identical. Here, we have crystallized Lys 63-linked and linear ubiquitin dimers, revealing that both adopt equivalent open conformations, forming no contacts between ubiquitin molecules and thereby differing significantly from Lys 48-linked ubiquitin chains.  ...[more]

Similar Datasets

| S-EPMC2735169 | biostudies-literature
| S-EPMC2797061 | biostudies-literature
| S-EPMC7008378 | biostudies-literature
| S-EPMC3138271 | biostudies-literature
| S-EPMC2867854 | biostudies-other
| S-EPMC1618115 | biostudies-literature
| S-EPMC3907715 | biostudies-literature
| S-EPMC3551259 | biostudies-literature
| S-EPMC4540474 | biostudies-literature
| S-EPMC2709242 | biostudies-literature