Unknown

Dataset Information

0

Rational design of protein-based MRI contrast agents.


ABSTRACT: We describe the rational design of a novel class of magnetic resonance imaging (MRI) contrast agents with engineered proteins (CAi.CD2, i = 1, 2,..., 9) chelated with gadolinium. The design of protein-based contrast agents involves creating high-coordination Gd(3+) binding sites in a stable host protein using amino acid residues and water molecules as metal coordinating ligands. Designed proteins show strong selectivity for Gd(3+) over physiological metal ions such as Ca(2+), Zn(2+), and Mg(2+). These agents exhibit a 20-fold increase in longitudinal and transverse relaxation rate values over the conventional small-molecule contrast agents, e.g., Gd-DTPA (diethylene triamine pentaacetic acid), used clinically. Furthermore, they exhibit much stronger contrast enhancement and much longer blood retention time than Gd-DTPA in mice. With good biocompatibility and potential functionalities, these protein contrast agents may be used as molecular imaging probes to target disease markers, thereby extending applications of MRI.

SUBMITTER: Yang JJ 

PROVIDER: S-EPMC2692035 | biostudies-literature | 2008 Jul

REPOSITORIES: biostudies-literature

altmetric image

Publications


We describe the rational design of a novel class of magnetic resonance imaging (MRI) contrast agents with engineered proteins (CAi.CD2, i = 1, 2,..., 9) chelated with gadolinium. The design of protein-based contrast agents involves creating high-coordination Gd(3+) binding sites in a stable host protein using amino acid residues and water molecules as metal coordinating ligands. Designed proteins show strong selectivity for Gd(3+) over physiological metal ions such as Ca(2+), Zn(2+), and Mg(2+).  ...[more]

Similar Datasets

| S-EPMC6899603 | biostudies-literature
| S-EPMC3463956 | biostudies-literature
| S-EPMC3273044 | biostudies-literature
| S-EPMC3675113 | biostudies-literature
| S-EPMC2725757 | biostudies-literature
| S-EPMC3032015 | biostudies-literature
| S-EPMC3226831 | biostudies-literature
| S-EPMC5441847 | biostudies-literature
| S-EPMC4955692 | biostudies-literature
| S-EPMC3170541 | biostudies-literature