Unknown

Dataset Information

0

Bone-metastatic potential of human prostate cancer cells correlates with Akt/PKB activation by alpha platelet-derived growth factor receptor.


ABSTRACT: Prostate adenocarcinoma metastasizes to the skeleton more frequently than any other organ. An underlying cause of this phenomenon may be the ability of bone-produced factors to specifically select disseminated prostate cancer cells that are susceptible to their trophic effects. Platelet-derived growth factor (PDGF), a potent mitogen for both normal and tumor cells, is produced in several tissues including bone, where it is synthesized by both osteoblasts and osteoclasts. Here, we show that PDGF causes a significantly stronger activation of the Akt/PKB survival pathway in bone-metastatic prostate cancer cells compared to nonmetastatic cells. Normal prostate epithelial cells and DU-145 prostate cells, originally derived from a brain metastasis, are not responsive to PDGF. In contrast, epidermal growth factor stimulates Akt to the same extent in all prostate cells tested. This difference in PDGF responsiveness depends on the higher expression of alpha-PDGFR in bone-metastatic compared to nonmetastatic prostate cells and the lack of alpha-PDGFR expression in normal and metastatic prostate cells derived from tissues other than bone. Thus, alpha-PDGFR expression might identify prostate cancer cells with the highest propensity to metastasize to the skeleton.

SUBMITTER: Dolloff NG 

PROVIDER: S-EPMC2712354 | biostudies-literature | 2005 Oct

REPOSITORIES: biostudies-literature

altmetric image

Publications

Bone-metastatic potential of human prostate cancer cells correlates with Akt/PKB activation by alpha platelet-derived growth factor receptor.

Dolloff Nathan G NG   Shulby Shannon S SS   Nelson Autumn V AV   Stearns Mark E ME   Johannes Gregg J GJ   Thomas Jeff D JD   Meucci Olimpia O   Fatatis Alessandro A  

Oncogene 20051001 45


Prostate adenocarcinoma metastasizes to the skeleton more frequently than any other organ. An underlying cause of this phenomenon may be the ability of bone-produced factors to specifically select disseminated prostate cancer cells that are susceptible to their trophic effects. Platelet-derived growth factor (PDGF), a potent mitogen for both normal and tumor cells, is produced in several tissues including bone, where it is synthesized by both osteoblasts and osteoclasts. Here, we show that PDGF  ...[more]

Similar Datasets

| S-EPMC2756685 | biostudies-literature
| S-EPMC2841635 | biostudies-other
| S-EPMC3627045 | biostudies-literature
| S-EPMC4013323 | biostudies-literature
| S-EPMC10418703 | biostudies-literature
| S-EPMC3965491 | biostudies-literature
| S-EPMC10753896 | biostudies-literature
| S-EPMC7119369 | biostudies-literature
| S-EPMC3631771 | biostudies-literature
| S-EPMC2908122 | biostudies-literature