A unified Poland-Scheraga model of oligo- and polynucleotide DNA melting: salt effects and predictive power.
Ontology highlight
ABSTRACT: Key biological and nano-technological processes require the partial or complete association and dissociation of complementary DNA strands. We present a variant of the Poland-Scheraga model for DNA melting where we introduce a local, sequence-dependent salt correction of the nearest-neighbor parameters. Furthermore, our formulation accounts for capping and interfacial energies of helical and coiled chain sections. We show that the model reproduces experimental data for melting temperatures over the full experimental range of strand length, strand concentration, and ionic strength of the solution. In particular, we reproduce a phenomenological relation by Frank-Kamenetskii for very long chains using a parameterization based on melting curves for short oligomers. However, we also show that the parameters of the Poland-Scheraga model are still not known with sufficient precision to quantitatively predict the fine structure of melting curves. This formulation of the Poland-Scheraga model opens the possibility to overcome this limitation by optimizing parameters with respect to an extended base of experimental data for short-, medium-, and long-chain melting. We argue that the often-discarded melting data for longer oligomers exhibiting non-two-state transitions could play a particularly important role.
SUBMITTER: Jost D
PROVIDER: S-EPMC2716684 | biostudies-literature | 2009 Feb
REPOSITORIES: biostudies-literature
ACCESS DATA