Unknown

Dataset Information

0

Kinetic and thermodynamic characterization of single-mismatch discrimination using single-molecule imaging.


ABSTRACT: A single-molecule detection setup based on total internal reflection fluorescence (TIRF) microscopy has been used to investigate association and dissociation kinetics of unlabeled 30mer DNA strands. Single-molecule sensitivity was accomplished by letting unlabeled DNA target strands mediate the binding of DNA-modified and fluorescently labeled liposomes to a DNA-modified surface. The liposomes, acting as signal enhancer elements, enabled the number of binding events as well as the residence time for high affinity binders (K(d) < 1 nM, k(off) < 0.01 s(-1)) to be collected under equilibrium conditions at low pM concentrations. The mismatch discrimination obtained from the residence time data was shown to be concentration and temperature independent in intervals of 1-100 pM and 23-46 degrees C, respectively. This suggests the method as a robust means for detection of point mutations at low target concentrations in, for example, single nucleotide polymorphism (SNP) analysis.

SUBMITTER: Gunnarsson A 

PROVIDER: S-EPMC2724293 | biostudies-literature | 2009 Aug

REPOSITORIES: biostudies-literature

altmetric image

Publications

Kinetic and thermodynamic characterization of single-mismatch discrimination using single-molecule imaging.

Gunnarsson Anders A   Jönsson Peter P   Zhdanov Vladimir P VP   Höök Fredrik F  

Nucleic acids research 20090609 14


A single-molecule detection setup based on total internal reflection fluorescence (TIRF) microscopy has been used to investigate association and dissociation kinetics of unlabeled 30mer DNA strands. Single-molecule sensitivity was accomplished by letting unlabeled DNA target strands mediate the binding of DNA-modified and fluorescently labeled liposomes to a DNA-modified surface. The liposomes, acting as signal enhancer elements, enabled the number of binding events as well as the residence time  ...[more]

Similar Datasets

| S-EPMC2586077 | biostudies-literature
| S-EPMC3494904 | biostudies-literature
| S-EPMC8171355 | biostudies-literature
| S-EPMC4103329 | biostudies-literature
| S-EPMC4310750 | biostudies-literature
| S-EPMC154504 | biostudies-literature
| S-EPMC10241884 | biostudies-literature
| S-EPMC3711696 | biostudies-literature
| S-EPMC3309285 | biostudies-literature
| S-EPMC4208041 | biostudies-literature