Unknown

Dataset Information

0

Elevation of glutamine level by selenophosphate synthetase 1 knockdown induces megamitochondrial formation in Drosophila cells.


ABSTRACT: Although selenophosphate synthetase 1 (SPS1/SelD) is an essential gene in Drosophila, its function has not been determined. To elucidate its intracellular role, we targeted the removal of SPS1/SelD mRNA in Drosophila SL2 cells using RNA interference technology that led to the formation of vacuole-like globular structures. Surprisingly, these structures were identified as megamitochondria, and only depolarized mitochondria developed into megamitochondria. The mRNA levels of l(2)01810 and glutamine synthetase 1 (GS1) were increased by SPS1/SelD knockdown. Blocking the expression of GS1 and l(2)01810 completely inhibited the formation of megamitochondria induced by loss of SPS1/SelD activity and decreased the intracellular levels of glutamine to those of control cells suggesting that the elevated level of glutamine is responsible for megamitochondrial formation. Overexpression of GS1 and l(2)01810 had a synergistic effect on the induction of megamitochondrial formation and on the synthesis of glutamine suggesting that l(2)01810 is involved in glutamine synthesis presumably by activating GS1. Our results indicate that, in Drosophila, SPS1/SelD regulates the intracellular glutamine by inhibiting GS1 and l(2)01810 expression and that elevated levels of glutamine lead to a nutritional stress that provides a signal for megamitochondrial formation.

SUBMITTER: Shim MS 

PROVIDER: S-EPMC2781704 | biostudies-literature | 2009 Nov

REPOSITORIES: biostudies-literature

altmetric image

Publications

Elevation of glutamine level by selenophosphate synthetase 1 knockdown induces megamitochondrial formation in Drosophila cells.

Shim Myoung Sup MS   Kim Jin Young JY   Jung Hee Kyoung HK   Lee Kwang Hee KH   Xu Xue-Ming XM   Carlson Bradley A BA   Kim Ki Woo KW   Kim Ick Young IY   Hatfield Dolph L DL   Lee Byeong Jae BJ  

The Journal of biological chemistry 20090915 47


Although selenophosphate synthetase 1 (SPS1/SelD) is an essential gene in Drosophila, its function has not been determined. To elucidate its intracellular role, we targeted the removal of SPS1/SelD mRNA in Drosophila SL2 cells using RNA interference technology that led to the formation of vacuole-like globular structures. Surprisingly, these structures were identified as megamitochondria, and only depolarized mitochondria developed into megamitochondria. The mRNA levels of l(2)01810 and glutamin  ...[more]

Similar Datasets

2016-04-06 | E-GEOD-79924 | biostudies-arrayexpress
2016-04-06 | GSE79924 | GEO
2009-08-18 | GSE17685 | GEO
| S-EPMC3218224 | biostudies-literature
| S-EPMC1083760 | biostudies-literature
| S-EPMC7891143 | biostudies-literature
2009-08-22 | E-GEOD-17685 | biostudies-arrayexpress
| S-EPMC4670565 | biostudies-literature
| S-EPMC7595633 | biostudies-literature
| S-EPMC2496870 | biostudies-literature