Synaptic circuit abnormalities of motor-frontal layer 2/3 pyramidal neurons in an RNA interference model of methyl-CpG-binding protein 2 deficiency.
Ontology highlight
ABSTRACT: Rett syndrome, an autism spectrum disorder with prominent motor and cognitive features, results from mutations in the gene for methyl-CpG-binding protein 2 (MeCP2). Here, to identify cortical circuit abnormalities that are specifically associated with MeCP2 deficiency, we used glutamate uncaging and laser scanning photostimulation to survey intracortical networks in mouse brain slices containing motor-frontal cortex. We used in utero transfection of short hairpin RNA constructs to knock down MeCP2 expression in a sparsely distributed subset of layer (L) 2/3 pyramidal neurons in wild-type mice, and compared input maps recorded from transfected-untransfected pairs of neighboring neurons. The effect of MeCP2 deficiency on local excitatory input pathways was severe, with an average reduction in excitatory synaptic input from middle cortical layers (L3/5A) of >30% compared with MeCP2-replete controls. MeCP2 deficiency primarily affected the strength, rather than the topography, of excitatory intracortical pathways. Inhibitory synaptic inputs and intrinsic eletrophysiological properties were unaffected in the MeCP2-knockdown neurons. These studies indicate that MeCP2 deficiency in individual postsynaptic cortical pyramidal neurons is sufficient to induce a pathological synaptic defect in excitatory intracortical circuits.
SUBMITTER: Wood L
PROVIDER: S-EPMC2782478 | biostudies-literature |
REPOSITORIES: biostudies-literature
ACCESS DATA