Modular scaffolds assembled around living cells using poly(ethylene glycol) microspheres with macroporation via a non-cytotoxic porogen.
Ontology highlight
ABSTRACT: Modular, bioactive, macroporous scaffolds were formed by crosslinking poly(ethylene glycol) (PEG) microspheres around living cells. Hydrogel microspheres were produced from reactive PEG derivatives in aqueous sodium sulfate solutions without the use of surfactants or copolymers. Microspheres were formed following thermally induced phase separation if the gel point was reached prior to extensive coarsening of the PEG-rich domains. Three types of PEG microspheres with different functionalities were used to form scaffolds: one type provided mechanical support, the second type provided controlled delivery of the angiogenesis-promoting molecule, sphingosine 1-phosphate (S1P) and the third type served as a slowly dissolving non-cytotoxic porogen. Scaffolds were formed by centrifuging microspheres in the presence of HepG2 hepatoma cells, resulting in a homogenous distribution of cells. During overnight incubation at 37 degrees C, the microspheres reacted with serum proteins in cell culture medium to stabilize the scaffolds. Within 2 days in culture, macropores formed due to the dissolution of the porogenic PEG microspheres, without affecting cell viability. Gradients in porosity were produced by varying the buoyancy of the porogenic microspheres. Conjugated RGD cell adhesion peptides and the delivery of S1P promoted endothelial cell infiltration through macropores in the scaffolds. The scaffolds presented here differ from previous hydrogel scaffolds in that: (i) cells are not encapsulated in hydrogel; (ii) macropores form in the presence of cells; and (iii) scaffold properties are controlled by the modular assembly of different microspheres that perform distinct functions.
SUBMITTER: Scott EA
PROVIDER: S-EPMC2787810 | biostudies-literature | 2010 Jan
REPOSITORIES: biostudies-literature
ACCESS DATA