Unknown

Dataset Information

0

A cancer-associated DNA polymerase delta variant modeled in yeast causes a catastrophic increase in genomic instability.


ABSTRACT: Accurate DNA synthesis by the replicative DNA polymerases alpha, delta, and epsilon is critical for genome stability in eukaryotes. In humans, over 20 SNPs were reported that result in amino-acid changes in Poldelta or Polepsilon. In addition, Poldelta variants were found in colon-cancer cell lines and in sporadic colorectal carcinomas. Using the yeast-model system, we examined the functional consequences of two cancer-associated Poldelta mutations and four polymorphisms affecting well-conserved regions of Poldelta or Polepsilon. We show that the R696W substitution in Poldelta (analog of the R689W change in the human cancer-cell line DLD-1) is lethal in haploid and homozygous diploid yeast. The cell death results from a catastrophic increase in spontaneous mutagenesis attributed to low-fidelity DNA synthesis by Poldelta-R696W. Heterozygotes survive, and the mutation rate depends on the relative expression level of wild-type versus mutant alleles. Based on these observations, we propose that the mutation rate in heterozygous human cells could be regulated by transient changes in gene expression leading to a temporary excess of Poldelta-R689W. The similarities between the mutational spectra of the yeast strains producing Poldelta-R696W and DLD-1 cells suggest that the altered Poldelta could be responsible for a significant proportion of spontaneous mutations in this cancer cell line. These results suggest that the highly error-prone Poldelta-R689W could contribute to cancer initiation and/or progression in humans.

SUBMITTER: Daee DL 

PROVIDER: S-EPMC2806701 | biostudies-literature | 2010 Jan

REPOSITORIES: biostudies-literature

altmetric image

Publications

A cancer-associated DNA polymerase delta variant modeled in yeast causes a catastrophic increase in genomic instability.

Daee Danielle L DL   Mertz Tony M TM   Shcherbakova Polina V PV  

Proceedings of the National Academy of Sciences of the United States of America 20091204 1


Accurate DNA synthesis by the replicative DNA polymerases alpha, delta, and epsilon is critical for genome stability in eukaryotes. In humans, over 20 SNPs were reported that result in amino-acid changes in Poldelta or Polepsilon. In addition, Poldelta variants were found in colon-cancer cell lines and in sporadic colorectal carcinomas. Using the yeast-model system, we examined the functional consequences of two cancer-associated Poldelta mutations and four polymorphisms affecting well-conserved  ...[more]

Similar Datasets

| S-EPMC2519721 | biostudies-literature
| S-EPMC3390657 | biostudies-literature
| S-EPMC7498342 | biostudies-literature
| S-EPMC3278960 | biostudies-literature
| S-EPMC4434702 | biostudies-literature
| S-EPMC1774566 | biostudies-literature
| S-EPMC5021065 | biostudies-literature
| S-EPMC6763221 | biostudies-literature
2021-10-07 | GSE185366 | GEO
| S-EPMC4269170 | biostudies-literature