Unknown

Dataset Information

0

Peptide neurotransmitters activate a cation channel complex of NALCN and UNC-80.


ABSTRACT: Several neurotransmitters act through G-protein-coupled receptors to evoke a 'slow' excitation of neurons. These include peptides, such as substance P and neurotensin, as well as acetylcholine and noradrenaline. Unlike the fast (approximately millisecond) ionotropic actions of small-molecule neurotransmitters, the slow excitation is not well understood at the molecular level, but can be mainly attributed to suppressing K(+) currents and/or activating a non-selective cation channel. The molecular identity of this cation channel has yet to be determined; similarly, how the channel is activated and its relative contribution to neuronal excitability induced by the neuropeptides are unknown. Here we show that, in the mouse hippocampal and ventral tegmental area neurons, substance P and neurotensin activate a channel complex containing NALCN and a large previously unknown protein UNC-80. The activation by substance P through TACR1 (a G-protein-coupled receptor for substance P) occurs by means of a unique mechanism: it does not require G-protein activation but is dependent on Src family kinases. These findings identify NALCN as the cation channel activated by substance P receptor, and suggest that UNC-80 and Src family kinases, rather than a G protein, are involved in the coupling from receptor to channel.

SUBMITTER: Lu B 

PROVIDER: S-EPMC2810458 | biostudies-literature | 2009 Feb

REPOSITORIES: biostudies-literature

altmetric image

Publications

Peptide neurotransmitters activate a cation channel complex of NALCN and UNC-80.

Lu Boxun B   Su Yanhua Y   Das Sudipto S   Wang Haikun H   Wang Yan Y   Liu Jin J   Ren Dejian D  

Nature 20081217 7230


Several neurotransmitters act through G-protein-coupled receptors to evoke a 'slow' excitation of neurons. These include peptides, such as substance P and neurotensin, as well as acetylcholine and noradrenaline. Unlike the fast (approximately millisecond) ionotropic actions of small-molecule neurotransmitters, the slow excitation is not well understood at the molecular level, but can be mainly attributed to suppressing K(+) currents and/or activating a non-selective cation channel. The molecular  ...[more]

Similar Datasets

| S-EPMC6945035 | biostudies-literature
| S-EPMC2265767 | biostudies-literature
| S-EPMC2987630 | biostudies-literature
| S-EPMC3102621 | biostudies-literature
| S-EPMC7712781 | biostudies-literature
| S-EPMC6671679 | biostudies-literature
| S-EPMC7672056 | biostudies-literature
| S-EPMC7182417 | biostudies-literature
| S-EPMC7438885 | biostudies-literature
| S-EPMC4980115 | biostudies-literature