Unknown

Dataset Information

0

FKBP38 protects Bcl-2 from caspase-dependent degradation.


ABSTRACT: The cellular processes that regulate Bcl-2 at the posttranslational levels are as important as those that regulate bcl-2 synthesis. Previously we demonstrated that the suppression of FK506-binding protein 38 (FKBP38) contributes to the instability of Bcl-2 or leaves Bcl-2 unprotected from degradation in an unknown mechanism. Here, we studied the underlying molecular mechanism mediating this process. We first showed that Bcl-2 binding-defective mutants of FKBP38 fail to accumulate Bcl-2 protein. We demonstrated that the FKBP38-mediated Bcl-2 stability is specific as the levels of other anti-apoptotic proteins such as Bcl-X(L) and Mcl-1 remained unaffected. FKBP38 enhanced the Bcl-2 stability under the blockade of de novo protein synthesis, indicating it is posttranslational. We showed that the overexpression of FKBP38 attenuates reduction rate of Bcl-2, thus resulting in an increment of the intracellular Bcl-2 level, contributing to the resistance of apoptotic cell death induced by the treatment of kinetin riboside, an anticancer drug. Caspase inhibitors markedly induced the accumulation of Bcl-2. In caspase-3-activated cells, the knockdown of endogenous FKBP38 by small interfering RNA resulted in Bcl-2 down-regulation as well, which was significantly recovered by the treatment with caspase inhibitors or overexpression of FKBP38. Finally we presented that the Bcl-2 cleavage by caspase-3 is blocked when Bcl-2 binds to FKBP38 through the flexible loop. Taken together, these results suggest that FKBP38 is a key player in regulating the function of Bcl-2 by antagonizing caspase-dependent degradation through the direct interaction with the flexible loop domain of Bcl-2, which contains the caspase cleavage site.

SUBMITTER: Choi BH 

PROVIDER: S-EPMC2843226 | biostudies-literature | 2010 Mar

REPOSITORIES: biostudies-literature

altmetric image

Publications

FKBP38 protects Bcl-2 from caspase-dependent degradation.

Choi Bo-Hwa BH   Feng Lin L   Yoon Ho Sup HS  

The Journal of biological chemistry 20100205 13


The cellular processes that regulate Bcl-2 at the posttranslational levels are as important as those that regulate bcl-2 synthesis. Previously we demonstrated that the suppression of FK506-binding protein 38 (FKBP38) contributes to the instability of Bcl-2 or leaves Bcl-2 unprotected from degradation in an unknown mechanism. Here, we studied the underlying molecular mechanism mediating this process. We first showed that Bcl-2 binding-defective mutants of FKBP38 fail to accumulate Bcl-2 protein.  ...[more]

Similar Datasets

| S-EPMC1176465 | biostudies-literature
| S-EPMC2838284 | biostudies-literature
| S-EPMC3366001 | biostudies-literature
| S-EPMC8061361 | biostudies-literature
| S-EPMC3619243 | biostudies-literature
| S-EPMC2873290 | biostudies-literature
| S-EPMC7895437 | biostudies-literature
| S-EPMC4914304 | biostudies-literature
| S-EPMC8311252 | biostudies-literature
| S-EPMC2757620 | biostudies-literature