Ontology highlight
ABSTRACT: Objective
Previous studies have established that hydrolysis of LDL by Group V secretory phospholipase A(2) (GV sPLA(2)) generates a modified particle capable of inducing macrophage foam cell formation. The aim of the present study was to determine whether GV sPLA(2)-hydrolyzed LDL (GV-LDL) produces pro-atherogenic effects in macrophages independent of cholesterol accumulation.Methods and results
J-774 cells incubated with GV-LDL produced more TNF-alpha and IL-6 compared to cells incubated with control-LDL. Indirect immunofluorescence showed that GV-LDL but not control-LDL induced nuclear translocation of NFkappaB. Inhibitors of NFkappaB activation, effectively blocked cytokine production induced by GV-LDL. Control-LDL and GV-LDL were separated from albumin present in reaction mixtures by ultracentrifugation. The albumin fraction derived from GV-LDL contained 80% of the FFA generated and was more potent than the re-isolated GV-LDL in inducing pro-inflammatory cytokine secretion. Linoleic acid (18:2) and oleic acid (18:1) were the most abundant FFAs generated, whereas newly formed lyso-PCs contained 14:0 (myristic), 16:1 (palmitic), and 18:2 fatty acyl groups. Experiments with synthetic FFA showed that 18:1 induced J-774 cells to secrete TNF-alpha and IL-6.Conclusions
These results indicate that in addition to promoting atherosclerotic lipid accumulation in macrophages, GV sPLA(2) hydrolysis of LDL leads to activation of NFkappaB, a key regulator of inflammation.
SUBMITTER: Boyanovsky BB
PROVIDER: S-EPMC2850046 | biostudies-literature | 2010 Apr
REPOSITORIES: biostudies-literature
Boyanovsky Boris B BB Li Xia X Shridas Preetha P Sunkara Manjula M Morris Andrew J AJ Webb Nancy R NR
Cytokine 20100206 1
<h4>Objective</h4>Previous studies have established that hydrolysis of LDL by Group V secretory phospholipase A(2) (GV sPLA(2)) generates a modified particle capable of inducing macrophage foam cell formation. The aim of the present study was to determine whether GV sPLA(2)-hydrolyzed LDL (GV-LDL) produces pro-atherogenic effects in macrophages independent of cholesterol accumulation.<h4>Methods and results</h4>J-774 cells incubated with GV-LDL produced more TNF-alpha and IL-6 compared to cells ...[more]