ABSTRACT: Molecular studies have shown that the majority of azole resistance in Aspergillus fumigatus is associated with amino acid substitutions in the cyp51A gene. To obtain insight into azole resistance mutations, the cyp51A gene of 130 resistant and 76 susceptible A. fumigatus isolates was sequenced. Out of 130 azole-resistant isolates, 105 contained a tandem repeat of 34 bp in the promoter region and a leucine-to-histidine substitution in codon 98 (designated TR/L98H). Additionally, in 12 of these TR/L98H resistant isolates, the mutations S297T and F495I were found, and in 1 isolate, the mutation F495I was found. In eight azole-resistant isolates, known azole resistance mutations were detected in codon G54, G138, or M220. In three azole-susceptible isolates, the mutation E130D, L252L, or S400I was found and in 13 azole-susceptible isolates but also in 1 azole-resistant isolate, the mutations F46Y, G98G, M172V, N248T, D255E, L358L, E427K, and C454C were found. All of the nonsynonymous mutations, apart from the mutations in codons G54, G138, and M220 and L98H, were located at the periphery of the protein, as determined by a structural model of the A. fumigatus Cyp51A protein, and were predicted neither to interact with azole compounds nor to affect structural integrity. Therefore, this wide diversity of mutations in the cyp51A gene in azole-susceptible A. fumigatus isolates is not correlated with azole resistance. Based on the Cyp51A protein homology model, the potential correlation of a mutation to azole resistance can be predicted.