Unknown

Dataset Information

0

A novel and simple micro-irradiation technique for creating localized DNA double-strand breaks.


ABSTRACT: An ataxia-telangiectasia mutated (ATM)-dependent DNA damage signal is amplified through the interaction of various factors, which are recruited to the chromatin regions with DNA double-strand breaks. Spatial and temporal regulation of such factors is analysed by fluorescence microscopy in combination with laser micro-irradiation. Here we describe a novel and simple technique for micro-irradiation that does not require a laser source. Cells were labelled with BrdU for 48-72 h, covered with porous polycarbonate membranes, and exposed to UVC. All BrdU-labelled cells showed localized foci of phosphorylated ATM, phosphorylated histone H2AX, MDC1 and 53BP1 upon irradiation, showing that these foci were induced irrespective of the cell-cycle phase. They were also detectable in nucleotide excision repair-defective XPA cells labelled with BrdU, indicating that the foci did not reflect an excision repair-related process. Furthermore, an ATM-specific inhibitor significantly attenuated the foci formation, and disappearance of the foci was significantly abrogated in non-homologous end-joining-defective cells. Thus, it can be concluded that micro-irradiation generated DNA double-strand breaks in BrdU-sensitized cells. The present technique should accelerate research in the fields of DNA damage response, DNA repair and DNA recombination, as it provides more chances to perform micro-irradiation experiments without any specific equipment.

SUBMITTER: Suzuki K 

PROVIDER: S-EPMC2896537 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

| S-EPMC2709554 | biostudies-literature
| S-EPMC6562062 | biostudies-literature
| S-EPMC390294 | biostudies-literature
| S-EPMC5664317 | biostudies-other
2020-07-07 | GSE134798 | GEO
2020-07-07 | GSE134797 | GEO
| S-EPMC7379675 | biostudies-literature
| S-EPMC5577458 | biostudies-literature
| S-EPMC2779242 | biostudies-literature
| S-EPMC5409072 | biostudies-literature