Unknown

Dataset Information

0

Mapping flexibility and the assembly switch of cell division protein FtsZ by computational and mutational approaches.


ABSTRACT: The molecular switch for nucleotide-regulated assembly and disassembly of the main prokaryotic cell division protein FtsZ is unknown despite the numerous crystal structures that are available. We have characterized the functional motions in FtsZ with a computational consensus of essential dynamics, structural comparisons, sequence conservation, and networks of co-evolving residues. Employing this information, we have constructed 17 mutants, which alter the FtsZ functional cycle at different stages, to modify FtsZ flexibility. The mutant phenotypes ranged from benign to total inactivation and included increased GTPase, reduced assembly, and stabilized assembly. Six mutations clustering at the long cleft between the C-terminal beta-sheet and core helix H7 deviated FtsZ assembly into curved filaments with inhibited GTPase, which still polymerize cooperatively. These mutations may perturb the predicted closure of the C-terminal domain onto H7 required for switching between curved and straight association modes and for GTPase activation. By mapping the FtsZ assembly switch, this work also gives insight into FtsZ druggability because the curved mutations delineate the putative binding site of the promising antibacterial FtsZ inhibitor PC190723.

SUBMITTER: Martin-Galiano AJ 

PROVIDER: S-EPMC2903349 | biostudies-literature | 2010 Jul

REPOSITORIES: biostudies-literature

altmetric image

Publications

Mapping flexibility and the assembly switch of cell division protein FtsZ by computational and mutational approaches.

Martín-Galiano Antonio J AJ   Buey Rubén M RM   Cabezas Marta M   Andreu José M JM  

The Journal of biological chemistry 20100513 29


The molecular switch for nucleotide-regulated assembly and disassembly of the main prokaryotic cell division protein FtsZ is unknown despite the numerous crystal structures that are available. We have characterized the functional motions in FtsZ with a computational consensus of essential dynamics, structural comparisons, sequence conservation, and networks of co-evolving residues. Employing this information, we have constructed 17 mutants, which alter the FtsZ functional cycle at different stag  ...[more]

Similar Datasets

| S-EPMC5460597 | biostudies-literature
| S-EPMC8529516 | biostudies-literature
| S-EPMC1367258 | biostudies-literature
| S-EPMC3223636 | biostudies-literature
| S-EPMC6168285 | biostudies-literature
| S-EPMC8836794 | biostudies-literature
| S-EPMC3039483 | biostudies-literature
| S-EPMC3198362 | biostudies-literature
| S-EPMC1299139 | biostudies-literature
| S-EPMC7611241 | biostudies-literature