Unknown

Dataset Information

0

Bioorthogonal chemistry amplifies nanoparticle binding and enhances the sensitivity of cell detection.


ABSTRACT: Nanoparticles have emerged as key materials for biomedical applications because of their unique and tunable physical properties, multivalent targeting capability, and high cargo capacity. Motivated by these properties and by current clinical needs, numerous diagnostic and therapeutic nanomaterials have recently emerged. Here we describe a novel nanoparticle targeting platform that uses a rapid, catalyst-free cycloaddition as the coupling mechanism. Antibodies against biomarkers of interest were modified with trans-cyclooctene and used as scaffolds to couple tetrazine-modified nanoparticles onto live cells. We show that the technique is fast, chemoselective, adaptable to metal nanomaterials, and scalable for biomedical use. This method also supports amplification of biomarker signals, making it superior to alternative targeting techniques including avidin/biotin.

SUBMITTER: Haun JB 

PROVIDER: S-EPMC2934903 | biostudies-literature | 2010 Sep

REPOSITORIES: biostudies-literature

altmetric image

Publications

Bioorthogonal chemistry amplifies nanoparticle binding and enhances the sensitivity of cell detection.

Haun Jered B JB   Devaraj Neal K NK   Hilderbrand Scott A SA   Lee Hakho H   Weissleder Ralph R  

Nature nanotechnology 20100801 9


Nanoparticles have emerged as key materials for biomedical applications because of their unique and tunable physical properties, multivalent targeting capability, and high cargo capacity. Motivated by these properties and by current clinical needs, numerous diagnostic and therapeutic nanomaterials have recently emerged. Here we describe a novel nanoparticle targeting platform that uses a rapid, catalyst-free cycloaddition as the coupling mechanism. Antibodies against biomarkers of interest were  ...[more]

Similar Datasets

| S-EPMC5556392 | biostudies-literature
| S-EPMC3263317 | biostudies-literature
| S-EPMC3547663 | biostudies-other
| S-EPMC3466019 | biostudies-literature
| S-EPMC6472971 | biostudies-literature
| S-EPMC3324005 | biostudies-literature
2024-04-15 | GSE231507 | GEO
| S-EPMC4694582 | biostudies-literature
| S-EPMC7175119 | biostudies-literature