Injury-induced regulation of steroidogenic gene expression in the cerebellum.
Ontology highlight
ABSTRACT: Sex steroids assist adult neural tissue in the protection from and repair of damage resulting from neural injury; some steroids may be synthesized in the brain. Songbirds are especially useful models to explore steroidal neuroprotection and repair. First, the full suite of cholesterol transporters and steroidogenic enzymes are expressed in the zebra finch (ZF) brain. Second, estrogens promote recovery of behavioral function after damage to the adult ZF cerebellum. Third, the estrogen synthetic enzyme aromatase is rapidly upregulated in reactive glia following neural injury, including in the ZF cerebellum. We hypothesized that cerebellar injury would locally upregulate steroidogenic factors upstream of aromatase, providing the requisite substrate for neuroestrogen synthesis. We tested this hypothesis by lesioning the cerebellum of adult songbirds using both males and females that peripherally synthesize steroids in different amounts. We then used quantitative PCR to examine expression of mRNAs for the neurosteroidogenic factors TSPO, StAR, SCC, 3?-HSD, CYP17, and aromatase, at 2 and 8 days post-lesion. Compared to sham lesions, cerebellar lesions significantly upregulated mRNA levels of TSPO and aromatase. Sex differences in response to the lesions were detected for TSPO, StAR, and aromatase. All birds responded to experimental conditions by showing time-dependent changes in the expression of TSPO, SCC, and aromatase, suggesting that acute trauma or stress may impact neurosteroidogensis for many days. These data suggest that the cerebellum is an active site of steroid synthesis in the brain, and each steroidogenic factor likely provides neuroprotection and promotes repair.
SUBMITTER: Mirzatoni A
PROVIDER: S-EPMC2953929 | biostudies-literature | 2010 Oct
REPOSITORIES: biostudies-literature
ACCESS DATA