Unknown

Dataset Information

0

A biomechanical rationale for C1-ring osteosynthesis as treatment for displaced Jefferson burst fractures with incompetency of the transverse atlantal ligament.


ABSTRACT: Nonsurgical treatment of Jefferson burst fractures (JBF) confers increased rates of C1-2 malunion with potential for cranial settling and neurologic sequels. Hence, fusion C1-2 was recognized as the superior treatment for displaced JBF, but sacrifies C1-2 motion. Ruf et al. introduced the C1-ring osteosynthesis (C1-RO). First results were favorable, but C1-RO was not without criticism due to the lack of clinical and biomechanical data serving evidence that C1-RO is safe in displaced JBF with proven rupture of the transverse atlantal ligament (TAL). Therefore, our objectives were to perform a biomechanical analysis of C1-RO for the treatment of displaced Jefferson burst fractures (JBF) with incompetency of the TAL. Five specimens C0-2 were subjected to loading with posteroanterior force transmission in an electromechanical testing machine (ETM). With the TAL left intact, loads were applied posteriorly via the C1-RO ramping from 10 to 100 N. Atlantoaxial subluxation was measured radiographically in terms of the anterior antlantodental interval (AADI) with an image intensifier placed surrounding the ETM. Load-displacement data were also recorded by the ETM. After testing the TAL-intact state, the atlas was osteotomized yielding for a JBF, the TAL and left lateral joint capsule were cut and the C1-RO was accomplished. The C1-RO was subjected to cyclic loading, ramping from 20 to 100 N to simulate post-surgery in vivo loading. Afterwards incremental loading (10-100 N) was repeated with subsequent increase in loads until failure occurred. Small differences (1-1.5 mm) existed between the radiographic AADI under incremental loading (10-100 N) with the TAL-intact as compared to the TAL-disrupted state. Significant differences existed for the beginning of loading (10 N, P = 0.02). Under physiological loads, the increase in the AADI within the incremental steps (10-100 N) was not significantly different between TAL-disrupted and TAL-intact state. Analysis of failure load (FL) testing showed no significant differences among the radiologically assessed displacement data (AADI) and that of the ETM (P = 0.5). FL was Ø297.5 +/- 108.5 N (range 158.8-449.0 N). The related displacement assessed by the ETM was Ø5.8 +/- 2.8 mm (range 2.3-7.9). All specimens succeeded a FL >150 N, four of them >250 N and three of them >300 N. In the TAL-disrupted state loads up to 100 N were transferred to C1, but the radiographic AADI did not exceed 5 mm in any specimen. In conclusion, reconstruction after displaced JBF with TAL and one capsule disrupted using a C1-RO involves imparting an axial tensile force to lift C0 into proper alignment to the C1-2 complex. Simultaneous compressive forces on the C1-lateral masses and occipital condyles allow for the recreation of the functional C0-2 ligamentous tension band and height. We demonstrated that under physiological loads, the C1-RO restores sufficient stability at C1-2 preventing significant translation. C1-RO might be a valid alternative for the treatment of displaced JBF in comparison to fusion of C1-2.

SUBMITTER: Koller H 

PROVIDER: S-EPMC2989204 | biostudies-literature | 2010 Aug

REPOSITORIES: biostudies-literature

altmetric image

Publications

A biomechanical rationale for C1-ring osteosynthesis as treatment for displaced Jefferson burst fractures with incompetency of the transverse atlantal ligament.

Koller Heiko H   Resch Herbert H   Tauber Mark M   Zenner Juliane J   Augat Peter P   Penzkofer Rainer R   Acosta Frank F   Kolb Klaus K   Kathrein Anton A   Hitzl Wolfgang W  

European spine journal : official publication of the European Spine Society, the European Spinal Deformity Society, and the European Section of the Cervical Spine Research Society 20100413 8


Nonsurgical treatment of Jefferson burst fractures (JBF) confers increased rates of C1-2 malunion with potential for cranial settling and neurologic sequels. Hence, fusion C1-2 was recognized as the superior treatment for displaced JBF, but sacrifies C1-2 motion. Ruf et al. introduced the C1-ring osteosynthesis (C1-RO). First results were favorable, but C1-RO was not without criticism due to the lack of clinical and biomechanical data serving evidence that C1-RO is safe in displaced JBF with pro  ...[more]

Similar Datasets

| S-EPMC9729808 | biostudies-literature
| S-EPMC8406960 | biostudies-literature
| S-EPMC9328528 | biostudies-literature
| S-EPMC9386452 | biostudies-literature
| S-EPMC10369786 | biostudies-literature
| S-EPMC4208959 | biostudies-other
| S-EPMC8609831 | biostudies-literature
| S-EPMC6583366 | biostudies-literature
| S-EPMC6205804 | biostudies-literature
| S-EPMC8085357 | biostudies-literature