Comprehensive analysis of karyotypic mosaicism between trophectoderm and inner cell mass.
Ontology highlight
ABSTRACT: Aneuploidy has been well-documented in blastocyst embryos, but prior studies have been limited in scale and/or lack mechanistic data. We previously reported preclinical validation of microarray 24-chromosome preimplantation genetic screening in a 24-h protocol. The method diagnoses chromosome copy number, structural chromosome aberrations, parental source of aneuploidy and distinguishes certain meiotic from mitotic errors. In this study, our objective was to examine aneuploidy in human blastocysts and determine correspondence of karyotypes between trophectoderm (TE) and inner cell mass (ICM). We disaggregated 51 blastocysts from 17 couples into ICM and one or two TE fractions. The average maternal age was 31. Next, we ran 24-chromosome microarray molecular karyotyping on all of the samples, and then performed a retrospective analysis of the data. The average per-chromosome confidence was 99.95%. Approximately 80% of blastocysts were euploid. The majority of aneuploid embryos were simple aneuploid, i.e. one or two whole-chromosome imbalances. Structural chromosome aberrations, which are common in cleavage stage embryos, occurred in only three blastocysts (5.8%). All TE biopsies derived from the same embryos were concordant. Forty-nine of 51 (96.1%) ICM samples were concordant with TE biopsies derived from the same embryos. Discordance between TE and ICM occurred only in the two embryos with structural chromosome aberration. We conclude that TE karyotype is an excellent predictor of ICM karyotype. Discordance between TE and ICM occurred only in embryos with structural chromosome aberrations.
SUBMITTER: Johnson DS
PROVIDER: S-EPMC2989828 | biostudies-literature | 2010 Dec
REPOSITORIES: biostudies-literature
ACCESS DATA