Liver regeneration is impaired in lipodystrophic fatty liver dystrophy mice.
Ontology highlight
ABSTRACT: We previously reported that mice subjected to partial hepatectomy exhibit rapid development of hypoglycemia followed by transient accumulation of fat in the early regenerating liver. We also showed that disrupting these metabolic alterations results in impaired liver regeneration. The studies reported here were undertaken to further characterize and investigate the functional importance of changes in systemic adipose metabolism during normal liver regeneration. The results showed that a systemic catabolic response is induced in each of two distinct, commonly used experimental models of liver regeneration (partial hepatectomy and carbon tetrachloride treatment), and that this response occurs in proportion to the degree of induced hepatic insufficiency. Together, these observations suggest that catabolism of systemic adipose stores may be essential for normal liver regeneration. To test this possibility, we investigated the hepatic regenerative response in fatty liver dystrophy (fld) mice, which exhibit partial lipodystrophy and have diminished peripheral adipose stores. The results showed that the development of hypoglycemia and hepatic accumulation of fat was attenuated and liver regeneration was impaired following partial hepatectomy in these animals. The fld mice also exhibited increased hepatic p21 expression and diminished plasma levels of the adipose-derived hormones adiponectin and leptin, which have each been implicated as regulators of liver regeneration.These data suggest that the hypoglycemia that develops after partial hepatectomy induces systemic lipolysis followed by accumulation of fat derived from peripheral stores in the early regenerating liver, and that these events may be essential for initiation of normal liver regeneration.
SUBMITTER: Gazit V
PROVIDER: S-EPMC2991544 | biostudies-literature | 2010 Dec
REPOSITORIES: biostudies-literature
ACCESS DATA