Unknown

Dataset Information

0

Incomplete reprogramming after fusion of human multipotent stromal cells and bronchial epithelial cells.


ABSTRACT: Bone marrow-derived progenitor cells can fuse with cells of several different tissues, including lung, especially following injury. Despite many reports of cell fusion, few studies have examined the function of the resulting hybrid cells. We cocultured human multipotent stromal cells (hMSCs) and normal human bronchial epithelial cells (NHBEs) and observed the formation of hMSC/NHBE heterokaryons. The heterokaryons expressed several proteins characteristic of epithelial cells, such as keratin and occludin. Hybrid cells also expressed the mRNAs and proteins for 2 important ion channels that maintain bronchial and alveolar fluid balance: the cystic fibrosis transmembrane conductance regulator (CFTR) and the amiloride-sensitive epithelial Na(+) channel (ENaC). By immunocytochemistry, CFTR was expressed in many hybrid cells but was absent or low in others. Whole-cell patch-clamp recordings demonstrated a glibenclamide-sensitive current in the presence of barium chloride, consistent with functional CFTR channels, in control NHBEs and hMSC/NHBE heterokaryons. Total cell capacitance measurements showed that the membrane surface area of heterokaryons was similar to that of NHBEs. Heterokaryons expressed the ?- and ?-ENaC subunits but did not express the ?-ENaC subunit, indicating the inability to form a complete ENaC channel. In addition, hybrid cells formed by the fusion of hMSCs with immortalized bronchial cells that expressed CFTR ?F508 did not lead to reprogramming of the hMSC nucleus and expression of wild-type CFTR mRNA. Our data show that reprogramming can be incomplete following fusion of adult progenitor cells and somatic cells and may lead to altered cell function.

SUBMITTER: Curril IM 

PROVIDER: S-EPMC2992376 | biostudies-literature | 2010 Dec

REPOSITORIES: biostudies-literature

altmetric image

Publications

Incomplete reprogramming after fusion of human multipotent stromal cells and bronchial epithelial cells.

Curril Ingrid M IM   Koide Masayo M   Yang Calvin H CH   Segal Alan A   Wellman George C GC   Spees Jeffrey L JL  

FASEB journal : official publication of the Federation of American Societies for Experimental Biology 20100819 12


Bone marrow-derived progenitor cells can fuse with cells of several different tissues, including lung, especially following injury. Despite many reports of cell fusion, few studies have examined the function of the resulting hybrid cells. We cocultured human multipotent stromal cells (hMSCs) and normal human bronchial epithelial cells (NHBEs) and observed the formation of hMSC/NHBE heterokaryons. The heterokaryons expressed several proteins characteristic of epithelial cells, such as keratin and  ...[more]

Similar Datasets

| S-EPMC3131301 | biostudies-literature
| S-EPMC6052640 | biostudies-literature
| S-EPMC5553681 | biostudies-literature
| S-EPMC5399058 | biostudies-literature
| S-EPMC3635148 | biostudies-literature
| S-EPMC7716221 | biostudies-literature
| S-EPMC4055144 | biostudies-literature
| S-EPMC3712557 | biostudies-literature
| S-EPMC5526951 | biostudies-literature
| S-EPMC3449229 | biostudies-literature