Ontology highlight
ABSTRACT: Background
MicroRNAs (miRNAs) are short, non-coding RNAs that regulate the expression of multiple target genes. Deregulation of miRNAs is common in human tumorigenesis. Low level expression of miR-26b has been found in glioma cells. However, its underlying mechanism of action has not been determined.Methodology/principal findings
Real-time PCR was employed to measure the expression level of miR-26b in glioma patients and cells. The level of miR-26b was inversely correlated with the grade of glioma. Ectopic expression of miR-26b inhibited the proliferation, migration and invasion of human glioma cells. A binding site for miR-26b was identified in the 3'UTR of EphA2. Over-expression of miR-26b in glioma cells repressed the endogenous level of EphA2 protein. Vasculogenic mimicry (VM) experiments were performed to further confirm the effects of miR-26b on the regulation of EphA2, and the results showed that miR-26b inhibited the VM processes which regulated by EphA2.Significance
This study demonstrated that miR-26b may act as a tumor suppressor in glioma and it directly regulates EphA2 expression. EphA2 is a direct target of miR-26b, and the down-regulation of EphA2 mediated by miR-26b is dependent on the binding of miR-26b to a specific response element of microRNA in the 3'UTR region of EphA2 mRNA.
SUBMITTER: Wu N
PROVIDER: S-EPMC3021542 | biostudies-literature | 2011 Jan
REPOSITORIES: biostudies-literature
Wu Ning N Zhao Xiangzhong X Liu Ming M Liu Haizhou H Yao Weicheng W Zhang Yuyan Y Cao Shousong S Lin Xiukun X
PloS one 20110114 1
<h4>Background</h4>MicroRNAs (miRNAs) are short, non-coding RNAs that regulate the expression of multiple target genes. Deregulation of miRNAs is common in human tumorigenesis. Low level expression of miR-26b has been found in glioma cells. However, its underlying mechanism of action has not been determined.<h4>Methodology/principal findings</h4>Real-time PCR was employed to measure the expression level of miR-26b in glioma patients and cells. The level of miR-26b was inversely correlated with t ...[more]