Unknown

Dataset Information

0

Urinary cell levels of mRNA for OX40, OX40L, PD-1, PD-L1, or PD-L2 and acute rejection of human renal allografts.


ABSTRACT: The positive costimulatory proteins OX40 and OX40L and negative regulatory proteins programmed death (PD)-1, PD ligand 1, and PD ligand 2 have emerged as significant regulators of acute rejection in experimental transplantation models.We obtained 21 urine specimens from 21 renal allograft recipients with graft dysfunction and biopsy-confirmed acute rejection and 25 specimens from 25 recipients with stable graft function and normal biopsy results (stable). Urinary cell levels of mRNAs were measured using real-time quantitative polymerase chain reaction assays, and the levels were correlated with allograft status and outcomes.Levels of OX40 mRNA (P<0.0001, Mann-Whitney test), OX40L mRNA (P=0.0004), and PD-1 mRNA (P=0.004), but not the mRNA levels of PD ligand 1 (P=0.08) or PD ligand 2 (P=0.20), were significantly higher in the urinary cells from the acute rejection group than the stable group. Receiver operating characteristic curve analysis demonstrated that acute rejection is predicted with a sensitivity of 95% and a specificity of 92% (area under the curve=0.98, 95% confidence interval 0.96-1.0, P<0.0001) using a combination of levels of mRNA for OX40, OX40L, PD-1, and levels of mRNA for the previously identified biomarker Foxp3. Within the acute rejection group, levels of mRNA for OX40 (P=0.0002), OX40L (P=0.0004), and Foxp3 (P=0.04) predicted acute rejection reversal, whereas only OX40 mRNA levels (P=0.04) predicted graft loss after acute rejection.A linear combination of urinary cell levels of mRNA for OX40, OX40L, PD-1, and Foxp3 was a strong predictor of acute rejection in human renal allograft biopsies. This prediction model should be validated using an independent cohort of renal allograft recipients.

SUBMITTER: Afaneh C 

PROVIDER: S-EPMC3033230 | biostudies-literature | 2010 Dec

REPOSITORIES: biostudies-literature

altmetric image

Publications

Urinary cell levels of mRNA for OX40, OX40L, PD-1, PD-L1, or PD-L2 and acute rejection of human renal allografts.

Afaneh Cheguevara C   Muthukumar Thangamani T   Lubetzky Michelle M   Ding Ruchuang R   Snopkowski Catherine C   Sharma Vijay K VK   Seshan Surya S   Dadhania Darshana D   Schwartz Joseph E JE   Suthanthiran Manikkam M  

Transplantation 20101201 12


<h4>Background</h4>The positive costimulatory proteins OX40 and OX40L and negative regulatory proteins programmed death (PD)-1, PD ligand 1, and PD ligand 2 have emerged as significant regulators of acute rejection in experimental transplantation models.<h4>Methods</h4>We obtained 21 urine specimens from 21 renal allograft recipients with graft dysfunction and biopsy-confirmed acute rejection and 25 specimens from 25 recipients with stable graft function and normal biopsy results (stable). Urina  ...[more]

Similar Datasets

| S-EPMC3786188 | biostudies-literature
| S-EPMC8929029 | biostudies-literature
| S-EPMC6469103 | biostudies-literature
| S-EPMC4322919 | biostudies-literature
| S-EPMC7189735 | biostudies-literature
| S-EPMC7101135 | biostudies-literature
| S-EPMC6287426 | biostudies-other
| S-EPMC6420824 | biostudies-literature
2020-04-07 | GSE142667 | GEO
| S-EPMC5019753 | biostudies-other