Unknown

Dataset Information

0

Replication infidelity via a mismatch with Watson-Crick geometry.


ABSTRACT: In describing the DNA double helix, Watson and Crick suggested that "spontaneous mutation may be due to a base occasionally occurring in one of its less likely tautomeric forms." Indeed, among many mispairing possibilities, either tautomerization or ionization of bases might allow a DNA polymerase to insert a mismatch with correct Watson-Crick geometry. However, despite substantial progress in understanding the structural basis of error prevention during polymerization, no DNA polymerase has yet been shown to form a natural base-base mismatch with Watson-Crick-like geometry. Here we provide such evidence, in the form of a crystal structure of a human DNA polymerase ? variant poised to misinsert dGTP opposite a template T. All atoms needed for catalysis are present at the active site and in positions that overlay with those for a correct base pair. The mismatch has Watson-Crick geometry consistent with a tautomeric or ionized base pair, with the pH dependence of misinsertion consistent with the latter. The results support the original idea that a base substitution can originate from a mismatch having Watson-Crick geometry, and they suggest a common catalytic mechanism for inserting a correct and an incorrect nucleotide. A second structure indicates that after misinsertion, the now primer-terminal G • T mismatch is also poised for catalysis but in the wobble conformation seen in other studies, indicating the dynamic nature of the pathway required to create a mismatch in fully duplex DNA.

SUBMITTER: Bebenek K 

PROVIDER: S-EPMC3033279 | biostudies-literature | 2011 Feb

REPOSITORIES: biostudies-literature

altmetric image

Publications

Replication infidelity via a mismatch with Watson-Crick geometry.

Bebenek Katarzyna K   Pedersen Lars C LC   Kunkel Thomas A TA  

Proceedings of the National Academy of Sciences of the United States of America 20110113 5


In describing the DNA double helix, Watson and Crick suggested that "spontaneous mutation may be due to a base occasionally occurring in one of its less likely tautomeric forms." Indeed, among many mispairing possibilities, either tautomerization or ionization of bases might allow a DNA polymerase to insert a mismatch with correct Watson-Crick geometry. However, despite substantial progress in understanding the structural basis of error prevention during polymerization, no DNA polymerase has yet  ...[more]

Similar Datasets

| S-EPMC3690913 | biostudies-literature
| S-EPMC3970900 | biostudies-literature
| S-EPMC6457083 | biostudies-literature
| S-EPMC4333085 | biostudies-literature
| S-EPMC3248023 | biostudies-other
| S-EPMC1367086 | biostudies-literature
| S-EPMC6099888 | biostudies-other
| S-EPMC2490738 | biostudies-literature
| S-EPMC4547696 | biostudies-literature
| S-EPMC3708525 | biostudies-literature