Project description:BackgroundSerum testosterone concentrations decrease as men age, but benefits of raising testosterone levels in older men have not been established.MethodsWe assigned 790 men 65 years of age or older with a serum testosterone concentration of less than 275 ng per deciliter and symptoms suggesting hypoandrogenism to receive either testosterone gel or placebo gel for 1 year. Each man participated in one or more of three trials--the Sexual Function Trial, the Physical Function Trial, and the Vitality Trial. The primary outcome of each of the individual trials was also evaluated in all participants.ResultsTestosterone treatment increased serum testosterone levels to the mid-normal range for men 19 to 40 years of age. The increase in testosterone levels was associated with significantly increased sexual activity, as assessed by the Psychosexual Daily Questionnaire (P<0.001), as well as significantly increased sexual desire and erectile function. The percentage of men who had an increase of at least 50 m in the 6-minute walking distance did not differ significantly between the two study groups in the Physical Function Trial but did differ significantly when men in all three trials were included (20.5% of men who received testosterone vs. 12.6% of men who received placebo, P=0.003). Testosterone had no significant benefit with respect to vitality, as assessed by the Functional Assessment of Chronic Illness Therapy-Fatigue scale, but men who received testosterone reported slightly better mood and lower severity of depressive symptoms than those who received placebo. The rates of adverse events were similar in the two groups.ConclusionsIn symptomatic men 65 years of age or older, raising testosterone concentrations for 1 year from moderately low to the mid-normal range for men 19 to 40 years of age had a moderate benefit with respect to sexual function and some benefit with respect to mood and depressive symptoms but no benefit with respect to vitality or walking distance. The number of participants was too few to draw conclusions about the risks of testosterone treatment. (Funded by the National Institutes of Health and others; ClinicalTrials.gov number, NCT00799617.).
Project description:ContextThe Testosterone Trials are a coordinated set of seven trials to determine the efficacy of T in symptomatic men ≥65 years old with unequivocally low T levels. Initial results of the Sexual Function Trial showed that T improved sexual activity, sexual desire, and erectile function.ObjectiveTo assess the responsiveness of specific sexual activities to T treatment; to relate hormone changes to changes in sexual function; and to determine predictive baseline characteristics and T threshold for sexual outcomes.DesignA placebo-controlled trial.SettingTwelve academic medical centers in the United States.ParticipantsA total of 470 men ≥65 years of age with low libido, average T <275 ng/dL, and a partner willing to have sexual intercourse at least twice a month.MethodsMen were assigned to take T gel or placebo for 1 year. Sexual function was assessed by three questionnaires every 3 months: the Psychosexual Daily Questionnaire, the Derogatis Interview for Sexual Function, and the International Index of Erectile Function.ResultsCompared with placebo, T administration significantly improved 10 of 12 measures of sexual activity. Incremental increases in total and free T and estradiol levels were associated with improvements in sexual activity and desire, but not erectile function. No threshold T level was observed for any outcome, and none of the 27 baseline characteristics predicted responsiveness to T.ConclusionsIn older men with low libido and low T levels, improvements in sexual desire and activity in response to T treatment were related to the magnitude of increases in T and estradiol levels, but there was no clear evidence of a threshold effect.
Project description:ImportanceRecent studies have yielded conflicting results as to whether testosterone treatment increases cardiovascular risk.ObjectiveTo test the hypothesis that testosterone treatment of older men with low testosterone slows progression of noncalcified coronary artery plaque volume.Design, setting, and participantsDouble-blinded, placebo-controlled trial at 9 academic medical centers in the United States. The participants were 170 of 788 men aged 65 years or older with an average of 2 serum testosterone levels lower than 275 ng/dL (82 men assigned to placebo, 88 to testosterone) and symptoms suggestive of hypogonadism who were enrolled in the Testosterone Trials between June 24, 2010, and June 9, 2014.InterventionTestosterone gel, with the dose adjusted to maintain the testosterone level in the normal range for young men, or placebo gel for 12 months.Main outcomes and measuresThe primary outcome was noncalcified coronary artery plaque volume, as determined by coronary computed tomographic angiography. Secondary outcomes included total coronary artery plaque volume and coronary artery calcium score (range of 0 to >400 Agatston units, with higher values indicating more severe atherosclerosis).ResultsOf 170 men who were enrolled, 138 (73 receiving testosterone treatment and 65 receiving placebo) completed the study and were available for the primary analysis. Among the 138 men, the mean (SD) age was 71.2 (5.7) years, and 81% were white. At baseline, 70 men (50.7%) had a coronary artery calcification score higher than 300 Agatston units, reflecting severe atherosclerosis. For the primary outcome, testosterone treatment compared with placebo was associated with a significantly greater increase in noncalcified plaque volume from baseline to 12 months (from median values of 204 mm3 to 232 mm3 vs 317 mm3 to 325 mm3, respectively; estimated difference, 41 mm3; 95% CI, 14 to 67 mm3; P = .003). For the secondary outcomes, the median total plaque volume increased from baseline to 12 months from 272 mm3 to 318 mm3 in the testosterone group vs from 499 mm3 to 541 mm3 in the placebo group (estimated difference, 47 mm3; 95% CI, 13 to 80 mm3; P = .006), and the median coronary artery calcification score changed from 255 to 244 Agatston units in the testosterone group vs 494 to 503 Agatston units in the placebo group (estimated difference, -27 Agatston units; 95% CI, -80 to 26 Agatston units). No major adverse cardiovascular events occurred in either group.Conclusions and relevanceAmong older men with symptomatic hypogonadism, treatment with testosterone gel for 1 year compared with placebo was associated with a significantly greater increase in coronary artery noncalcified plaque volume, as measured by coronary computed tomographic angiography. Larger studies are needed to understand the clinical implications of this finding.Trial registrationclinicaltrials.gov Identifier: NCT00799617.
Project description:ImportanceMost cognitive functions decline with age. Prior studies suggest that testosterone treatment may improve these functions.ObjectiveTo determine if testosterone treatment compared with placebo is associated with improved verbal memory and other cognitive functions in older men with low testosterone and age-associated memory impairment (AAMI).Design, setting, and participantsThe Testosterone Trials (TTrials) were 7 trials to assess the efficacy of testosterone treatment in older men with low testosterone levels. The Cognitive Function Trial evaluated cognitive function in all TTrials participants. In 12 US academic medical centers, 788 men who were 65 years or older with a serum testosterone level less than 275 ng/mL and impaired sexual function, physical function, or vitality were allocated to testosterone treatment (n = 394) or placebo (n = 394). A subgroup of 493 men met criteria for AAMI based on baseline subjective memory complaints and objective memory performance. Enrollment in the TTrials began June 24, 2010; the final participant completed treatment and assessment in June 2014.InterventionsTestosterone gel (adjusted to maintain the testosterone level within the normal range for young men) or placebo gel for 1 year.Main outcomes and measuresThe primary outcome was the mean change from baseline to 6 months and 12 months for delayed paragraph recall (score range, 0 to 50) among men with AAMI. Secondary outcomes were mean changes in visual memory (Benton Visual Retention Test; score range, 0 to -26), executive function (Trail-Making Test B minus A; range, -290 to 290), and spatial ability (Card Rotation Test; score range, -80 to 80) among men with AAMI. Tests were administered at baseline, 6 months, and 12 months.ResultsAmong the 493 men with AAMI (mean age, 72.3 years [SD, 5.8]; mean baseline testosterone, 234 ng/dL [SD, 65.1]), 247 were assigned to receive testosterone and 246 to receive placebo. Of these groups, 247 men in the testosterone group and 245 men in the placebo completed the memory study. There was no significant mean change from baseline to 6 and 12 months in delayed paragraph recall score among men with AAMI in the testosterone and placebo groups (adjusted estimated difference, -0.07 [95% CI, -0.92 to 0.79]; P = .88). Mean scores for delayed paragraph recall were 14.0 at baseline, 16.0 at 6 months, and 16.2 at 12 months in the testosterone group and 14.4 at baseline, 16.0 at 6 months, and 16.5 at 12 months in the placebo group. Testosterone was also not associated with significant differences in visual memory (-0.28 [95% CI, -0.76 to 0.19]; P = .24), executive function (-5.51 [95% CI, -12.91 to 1.88]; P = .14), or spatial ability (-0.12 [95% CI, -1.89 to 1.65]; P = .89).Conclusions and relevanceAmong older men with low testosterone and age-associated memory impairment, treatment with testosterone for 1 year compared with placebo was not associated with improved memory or other cognitive functions.Trial registrationclinicaltrials.gov Identifier: NCT00799617.
Project description:ImportanceAs men age, they experience decreased serum testosterone concentrations, decreased bone mineral density (BMD), and increased risk of fracture.ObjectiveTo determine whether testosterone treatment of older men with low testosterone increases volumetric BMD (vBMD) and estimated bone strength.Design, setting, and participantsPlacebo-controlled, double-blind trial with treatment allocation by minimization at 9 US academic medical centers of men 65 years or older with 2 testosterone concentrations averaging less than 275 ng/L participating in the Testosterone Trials from December 2011 to June 2014. The analysis was a modified intent-to-treat comparison of treatment groups by multivariable linear regression adjusted for balancing factors as required by minimization.InterventionsTestosterone gel, adjusted to maintain the testosterone level within the normal range for young men, or placebo gel for 1 year.Main outcomes and measuresSpine and hip vBMD was determined by quantitative computed tomography at baseline and 12 months. Bone strength was estimated by finite element analysis of quantitative computed tomography data. Areal BMD was assessed by dual energy x-ray absorptiometry at baseline and 12 months.ResultsThere were 211 participants (mean [SD] age, 72.3 [5.9] years; 86% white; mean [SD] body mass index, 31.2 [3.4]). Testosterone treatment was associated with significantly greater increases than placebo in mean spine trabecular vBMD (7.5%; 95% CI, 4.8% to 10.3% vs 0.8%; 95% CI, -1.9% to 3.4%; treatment effect, 6.8%; 95% CI, 4.8%-8.7%; P < .001), spine peripheral vBMD, hip trabecular and peripheral vBMD, and mean estimated strength of spine trabecular bone (10.8%; 95% CI, 7.4% to 14.3% vs 2.4%; 95% CI, -1.0% to 5.7%; treatment effect, 8.5%; 95% CI, 6.0%-10.9%; P < .001), spine peripheral bone, and hip trabecular and peripheral bone. The estimated strength increases were greater in trabecular than peripheral bone and greater in the spine than hip. Testosterone treatment increased spine areal BMD but less than vBMD.Conclusions and relevanceTestosterone treatment for 1 year of older men with low testosterone significantly increased vBMD and estimated bone strength, more in trabecular than peripheral bone and more in the spine than hip. A larger, longer trial could determine whether this treatment also reduces fracture risk.Trial registrationclinicaltrials.gov Identifier: NCT00799617.
Project description:Testosterone (T) replacement is being increasingly offered to older men with age-related decline in testosterone levels. The effects of long-term testosterone replacement and aromatase inhibition (AI) on glucose homeostasis and cardiometabolic markers were determine in older non-diabetic men with low testosterone levels. Men ?65 years, mean age 71 ± 3 years with serum total T < 350 ng/dL were randomized in a double-blind, placebo-controlled, parallel-group, proof-of-concept trial evaluating the effects of 5 g transdermal testosterone gel (TT) (n = 10), 1 mg anastrozole (n = 10) or placebo (n = 9) daily for 12 months. Homeostatic Model Assessment of insulin resistance (HOMAIR ) was the primary outcome. Secondary outcomes included OGIS in response to OGTT, fasting lipids, C-reactive protein (CRP), adipokines, and abdominal and mid-thigh fat by computed tomography. All outcomes were assessed at baseline and 12 months. After 12 months, absolute changes in HOMAIR in both treatment arms (TT group: -0.05 ± 0.21); (AI group: 0.15 ± 0.10) were similar to placebo (-0.11 ± 0.26), as were CRP and fasting lipid levels. Adiponectin levels significantly decreased in the TT group (-1.8 ± 0.9 mg/L, p = 0.02) and abdominal subcutaneous fat (-60.34 ± 3.19 cm2 , p = 0.003) and leptin levels (-1.5 ± 1.2 ng/mL, p = 0.04) were significantly lower with AI. Mid-thigh subcutaneous fat was reduced in both treatment arms (TT group: -4.88 ± 1.24 cm2 , p = 0.008); (AI group: -6.05 ± 0.87 cm2 , p = 0.0002). In summary, in this proof-of-concept trial, changes in HOMAIR AI were similar in all three groups while the effects of intervention on subcutaneous fat distribution and adipokines were variable. Larger efficacy and safety trials are needed before AI pharmacotherapy can be considered as a treatment option for low T levels in older men.
Project description:Background The prevalence of low testosterone levels in men increases with age, as does the prevalence of decreased mobility, sexual function, self-perceived vitality, cognitive abilities, bone mineral density, and glucose tolerance, and of increased anemia and coronary artery disease. Similar changes occur in men who have low serum testosterone concentrations due to known pituitary or testicular disease, and testosterone treatment improves the abnormalities. Prior studies of the effect of testosterone treatment in elderly men, however, have produced equivocal results. Purpose To describe a coordinated set of clinical trials designed to avoid the pitfalls of prior studies and to determine definitively whether testosterone treatment of elderly men with low testosterone is efficacious in improving symptoms and objective measures of age-associated conditions. Methods We present the scientific and clinical rationale for the decisions made in the design of this set of trials. Results We designed The Testosterone Trials as a coordinated set of seven trials to determine if testosterone treatment of elderly men with low serum testosterone concentrations and symptoms and objective evidence of impaired mobility and/or diminished libido and/or reduced vitality would be efficacious in improving mobility (Physical Function Trial), sexual function (Sexual Function Trial), fatigue (Vitality Trial), cognitive function (Cognitive Function Trial), hemoglobin (Anemia Trial), bone density (Bone Trial), and coronary artery plaque volume (Cardiovascular Trial). The scientific advantages of this coordination were common eligibility criteria, common approaches to treatment and monitoring, and the ability to pool safety data. The logistical advantages were a single steering committee, data coordinating center and data and safety monitoring board, the same clinical trial sites, and the possibility of men participating in multiple trials. The major consideration in participant selection was setting the eligibility criterion for serum testosterone low enough to ensure that the men were unequivocally testosterone deficient, but not so low as to preclude sufficient enrollment or eventual generalizability of the results. The major considerations in choosing primary outcomes for each trial were identifying those of the highest clinical importance and identifying the minimum clinically important differences between treatment arms for sample size estimation. Potential limitations Setting the serum testosterone concentration sufficiently low to ensure that most men would be unequivocally testosterone deficient, as well as many other entry criteria, resulted in screening approximately 30 men in person to randomize one participant. Conclusion Designing The Testosterone Trials as a coordinated set of seven trials afforded many important scientific and logistical advantages but required an intensive recruitment and screening effort.
Project description:ObjectiveTo assess whether the receipt of androgen therapy is associated with a reduced 30-day rehospitalization rate among older men with testosterone deficiency.Patients and methodsWe conducted a retrospective cohort study using a 5% national sample of Medicare beneficiaries. We identified 6372 nonsurgical hospitalizations between January 1, 2007, and December 31, 2012, for male patients aged 66 years and older with a previous diagnosis of testosterone deficiency. Patients who died or lost Medicare coverage in the 30 days after hospital discharge or who were discharged to another inpatient setting were excluded from the analysis. Logistic regression was used to calculate odds ratios (ORs) and 95% CIs for the risk of 30-day hospital readmissions associated with receipt of androgen therapy.ResultsIn older men with testosterone deficiency, receipt of androgen therapy was associated with a reduced risk of rehospitalization (91 of 929 androgen users [9.8%] vs 708 of 5443 non-androgen users [13.0%]; OR, 0.73; 95% CI, 0.58-0.92) in the 30 days after hospital discharge. In a logistic regression analysis adjusting for multiple demographic, clinical, and health service variables, the OR was similar (OR, 0.75; 95% CI, 0.59-0.95). The adjusted OR for unplanned 30-day hospital readmissions was 0.62 (95% CI, 0.47-0.83). Each of these findings persisted across a range of propensity score analyses-including adjustment, stratification, and inverse probability treatment weighting-and several sensitivity analyses.ConclusionAndrogen therapy may reduce the risk of rehospitalization in older men with testosterone deficiency. Given the high rates of early hospital readmission among older adults, further exploration of this intervention holds broad clinical and public health relevance.
Project description:Aging in men is associated with loss of bone mass, impaired physical function and altered body composition. The objective of this proof-of-concept randomized, double-blind, placebo-controlled, parallel-group, single-center trial was to determine the relative effects of testosterone (T) and estradiol (E(2)) on bone mineral density, body composition, and physical performance in older men. The primary outcome was lumbar spine bone mineral density (BMD), and secondary outcomes were body composition, muscle strength, gait speed, and sex hormone concentrations. Forty three men (age range, 65-82 years; mean age 71 years) with low total T levels <350 ng/dL were randomized to one of three groups: 5 g transdermal testosterone gel (TT) (N = 16), anastrozole (AI) 1 mg (N = 14) or placebo daily (N = 13) for 12 months. Outcomes were assessed at baseline, 3, 6, and 12 months. Both TT and AI increased serum TT levels (>500 ng/dL, p < 0.05) compared to baseline; T values remained stable throughout the duration of the trial. At 12 months, TT improved the primary outcome of lumbar spine BMD (p < 0.01).Both interventions improved knee strength at 12 months compared to baseline (p < 0.05) while lean body mass significantly increased only in the AI group at 6 and 12 months (1.49 ± 0.38 kg, p < 0.01; 1.24 ± 0.39 kg, p < 0.05, respectively) compared to baseline. Interestingly, TT improved fast gait speed at 3 and 12 months (p < 0.01, p < 0.05, respectively). In summary, this proof-of-concept study confirms that aromatization of T is required for maintaining BMD in older men with low-T levels. The trial also uncovered the novel finding that aromatization of T is required for improvement in fast gait speed, an observation that needs to be verified in future studies.
Project description:OBJECTIVE:The aim of the study was to examine whether receipt of testosterone replacement therapy was associated with reduced 30-day rehospitalization after postacute care among older men with testosterone deficiency. DESIGN, PATIENTS, AND METHODS:We conducted a retrospective cohort study using a 5% national sample of Medicare beneficiaries. We identified 1290 nonsurgical inpatient postacute care discharges between January 1, 2007, and October 31, 2014, for male patients, 66 yrs or older, with a previous diagnosis of testosterone deficiency. Multivariable logistic regression was used to calculate odds ratios and 95% confidence intervals for 30-day postacute care rehospitalization related to receipt of testosterone replacement therapy. RESULTS:In older men with testosterone deficiency, receipt of testosterone replacement therapy was not associated with rehospitalization (odds ratio = 0.87, 95% confidence interval, 0.59-1.29) in the 30 days after postacute care discharge. These findings persisted after adjustment for quintile of propensity scores (odds ratio = 0.90, 95% confidence interval = 0.62-1.30). CONCLUSION:Testosterone replacement therapy was not associated with reduced rehospitalization after postacute care discharge in older men with testosterone deficiency. Further research in this population should examine the effects of testosterone replacement therapy on functional recovery and community independence.