Structural determinants of PERK inhibitor potency and selectivity.
Ontology highlight
ABSTRACT: The unfolded protein response (UPR) is a coordinated program that promotes cell survival under conditions of endoplasmic reticulum stress and is required in tumor progression as well. To date, no specific small molecule inhibitor targeting this pathway has been identified. Pancreatic endoplasmic reticulum kinase (PERK), one of the UPR transducers, is an eIF2? kinase. Compromising PERK function inhibits tumor growth in mice, suggesting that PERK may be a cancer drug target, but identifying a specific inhibitor of any kinase is challenging. The goal of this study was to identify some pair-wise receptor-ligand atomic contacts that confer selective PERK inhibition. Compounds selectively inhibiting PERK-mediated phosphorylation in vitro were identified using an initial virtual library screen, followed by structure-activity hypothesis testing. The most potent PERK selective inhibitors utilize three specific kinase active site contacts that, when absent from chemically similar compounds, abrogates the inhibition: (i) a strong van der Waals contact with PERK residue Met7, (ii) interactions with the N-terminal portion of the activation loop, and (iii) groups providing electrostatic complementarity to Asp144. Interestingly, the activation loop contact is required for PERK selectivity to emerge. Understanding these structure-activity relationships may accelerate rational PERK inhibitor design.
SUBMITTER: Wang H
PROVIDER: S-EPMC3058854 | biostudies-literature | 2010 Dec
REPOSITORIES: biostudies-literature
ACCESS DATA