Unknown

Dataset Information

0

A screen for novel phosphoinositide 3-kinase effector proteins.


ABSTRACT: Class I phosphoinositide 3-kinases exert important cellular effects through their two primary lipid products, phosphatidylinositol 3,4,5-trisphosphate and phosphatidylinositol 3,4-bisphosphate (PtdIns(3,4)P(2)). As few molecular targets for PtdIns(3,4)P(2) have yet been identified, a screen for PI 3-kinase-responsive proteins that is selective for these is described. This features a tertiary approach incorporating a unique, primary recruitment of target proteins in intact cells to membranes selectively enriched in PtdIns(3,4)P(2). A secondary purification of these proteins, optimized using tandem pleckstrin homology domain containing protein-1 (TAPP-1), an established PtdIns(3,4)P(2) selective ligand, yields a fraction enriched in proteins of potentially similar lipid binding character that are identified by liquid chromatography-tandem MS. Thirdly, this approach is coupled to stable isotope labeling with amino acids in cell culture using differential isotope labeling of cells stimulated in the absence and presence of the PI 3-kinase inhibitor wortmannin. This provides a ratio-metric readout that distinguishes authentically responsive components from copurifying background proteins. Enriched fractions thus obtained from astrocytoma cells revealed a subset of proteins that exhibited ratios indicative of their initial, cellular responsiveness to PI 3-kinase activation. The inclusion among these of tandem pleckstrin homology domain containing protein-1, three isoforms of Akt, switch associated protein-70, early endosome antigen-1 and of additional proteins expressing recognized lipid binding domains demonstrates the utility of this strategy and lends credibility to the novel candidate proteins identified. The latter encompass a broad set of proteins that include the gene product of TBC1D2A, a putative Rab guanine nucleotide triphosphatase activating protein (GAP) and IQ motif containing GAP1, a potential tumor promoter. A sequence comparison of the former protein indicates the presence of a pleckstrin homology domain whose lipid binding character remains to be established. IQ motif containing GAP1 lacks known lipid interacting components and a preliminary analysis here indicates that this may exemplify a novel class of atypical phosphoinositide (aPI) binding domain.

SUBMITTER: Dixon MJ 

PROVIDER: S-EPMC3069342 | biostudies-literature | 2011 Apr

REPOSITORIES: biostudies-literature

altmetric image

Publications

A screen for novel phosphoinositide 3-kinase effector proteins.

Dixon Miles J MJ   Gray Alexander A   Boisvert François-Michel FM   Agacan Mark M   Morrice Nicholas A NA   Gourlay Robert R   Leslie Nicholas R NR   Downes C Peter CP   Batty Ian H IH  

Molecular & cellular proteomics : MCP 20110124 4


Class I phosphoinositide 3-kinases exert important cellular effects through their two primary lipid products, phosphatidylinositol 3,4,5-trisphosphate and phosphatidylinositol 3,4-bisphosphate (PtdIns(3,4)P(2)). As few molecular targets for PtdIns(3,4)P(2) have yet been identified, a screen for PI 3-kinase-responsive proteins that is selective for these is described. This features a tertiary approach incorporating a unique, primary recruitment of target proteins in intact cells to membranes sele  ...[more]

Similar Datasets

| S-EPMC20722 | biostudies-literature
| S-EPMC5516292 | biostudies-literature
| S-EPMC10894968 | biostudies-literature
| S-EPMC6741018 | biostudies-literature
| S-EPMC3419191 | biostudies-literature
| S-EPMC2692628 | biostudies-literature
| S-EPMC8250422 | biostudies-literature
| S-EPMC6862339 | biostudies-literature
| S-EPMC33436 | biostudies-literature
| S-EPMC3574943 | biostudies-literature