Coordination-driven self-assembly of M3L2 trigonal cages from preorganized metalloligands incorporating octahedral metal centers and fluorescent detection of nitroaromatics.
Ontology highlight
ABSTRACT: The design and preparation of novel M(3)L(2) trigonal cages via the coordination-driven self-assembly of preorganized metalloligands containing octahedral aluminum(III), gallium(III), or ruthenium(II) centers is described. When tritopic or dinuclear linear metalloligands and appropriate complementary subunits are employed, M(3)L(2) trigonal-bipyramidal and trigonal-prismatic cages are self-assembled under mild conditions. These three-dimensional cages were characterized with multinuclear NMR spectroscopy ((1)H and (31)P) and high-resolution electrospray ionization mass spectrometry. The structure of one such trigonal-prismatic cage, self-assembled from an arene ruthenium metalloligand, was confirmed via single-crystal X-ray crystallography. The fluorescent nature of these prisms, due to the presence of their electron-rich ethynyl functionalities, prompted photophysical studies, which revealed that electron-deficient nitroaromatics are effective quenchers of the cages' emission. Excited-state charge transfer from the prisms to the nitroaromatic substrates can be used as the basis for the development of selective and discriminatory turn-off fluorescent sensors for nitroaromatics.
SUBMITTER: Wang M
PROVIDER: S-EPMC3071539 | biostudies-literature | 2011 Feb
REPOSITORIES: biostudies-literature
ACCESS DATA