Co2+ selectivity of Thermotoga maritima CorA and its inability to regulate Mg2+ homeostasis present a new class of CorA proteins.
Ontology highlight
ABSTRACT: CorA is a family of divalent cation transporters ubiquitously present in bacteria and archaea. Although CorA can transport both Mg(2+) and Co(2+) almost equally well, its main role has been suggested to be that of primary Mg(2+) transporter of prokaryotes and hence the regulator of Mg(2+) homeostasis. The reason is that the affinity of CorA for Co(2+) is relatively low and thus considered non-physiological. Here, we show that Thermotoga maritima CorA (TmCorA) is incapable of regulating the Mg(2+) homeostasis and therefore cannot be the primary Mg(2+) transporter of T. maritima. Further, our in vivo experiments confirm that TmCorA is a highly selective Co(2+) transporter, as it selects Co(2+) over Mg(2+) at >100 times lower concentrations. In addition, we present data that show TmCorA to be extremely thermostable in the presence of Co(2+). Mg(2+) could not stabilize the protein to the same extent, even at high concentrations. We also show that addition of Co(2+), but not Mg(2+), specifically induces structural changes to the protein. Altogether, these data show that TmCorA has the role of being the transporter of Co(2+) but not Mg(2+). The physiological relevance and requirements of Co(2+) in T. maritima is discussed and highlighted. We suggest that CorA may have different roles in different organisms. Such functional diversity is presumably a reflection of minor, but important structural differences within the CorA family that regulate the gating, substrate selection, and transport.
SUBMITTER: Xia Y
PROVIDER: S-EPMC3091257 | biostudies-literature | 2011 May
REPOSITORIES: biostudies-literature
ACCESS DATA