CAMP activates TRPC6 channels via the phosphatidylinositol 3-kinase (PI3K)-protein kinase B (PKB)-mitogen-activated protein kinase kinase (MEK)-ERK1/2 signaling pathway.
Ontology highlight
ABSTRACT: cAMP is an important second messenger that executes diverse physiological function in living cells. In this study, we investigated the effect of cAMP on canonical TRPC6 (transient receptor potential channel 6) channels in TRPC6-expressing HEK293 cells and glomerular mesangial cells. The results showed that 500 ?m 8-Br-cAMP, a cell-permeable analog of cAMP, elicited [Ca(2+)](i) increases and stimulated a cation current at the whole-cell level in TRPC6-expressing HEK293 cells. The effect of cAMP diminished in the presence of the PI3K inhibitors wortmannin and LY294002 or the MEK inhibitors PD98059, U0126, and MEK inhibitor I. 8-Br-cAMP also induced phosphorylation of MEK and ERK1/2. Conversion of serine to glycine at an ERK1/2 phosphorylation site (S281G) abolished the cAMP activation of TRPC6 as determined by whole-cell and cell-attached single-channel patch recordings. Experiments based on a panel of pharmacological inhibitors or activators suggested that the cAMP action on TRPC6 was not mediated by PKA, PKG, or EPAC (exchange protein activated by cAMP). Total internal fluorescence reflection microscopy showed that 8-Br-cAMP did not alter the trafficking of TRPC6 to the plasma membrane. We also found that, in glomerular mesangial cells, glucagon-induced [Ca(2+)](i) increases were mediated through the cAMP-PI3K-PKB-MEK-ERK1/2-TRPC6 signaling pathway. In summary, this study uncovered a novel TRPC6 activation mechanism in which cAMP activates TRPC6 via the PI3K-PKB-MEK-ERK1/2 signaling pathway.
SUBMITTER: Shen B
PROVIDER: S-EPMC3103323 | biostudies-literature | 2011 Jun
REPOSITORIES: biostudies-literature
ACCESS DATA