Epigenetic regulation of matrix metalloproteinases and their collagen substrates in cancer.
Ontology highlight
ABSTRACT: Our review covers the recent epigenetic data that are focused on matrix metalloproteinases (MMPs), their inhibitors (tissue inhibitors of MMPs; TIMPs) and collagen substrates. Twenty-four MMPs, four TIMPs and at least 28 collagen types are known in humans. The MMP activity regulates the functionality of multiple extracellular matrix proteins, cytokines, growth factors and cell signaling and adhesion receptors. Aberrantly enhanced MMP proteolysis affects multiple cell functions, including proliferation, migration and invasion. This aberrant MMP proteolysis is frequently recorded in cancer. Recent evidence, however, indicates that several MMPs function as tumor suppressors in cancer. Their inhibition could have pro-tumorigenic effects (making them anti-targets), counterbalancing the benefits of target inhibition and leading to adverse effects in cancer patients. The current epigenetic data suggest that there are distinct multi-layered epigenetic mechanisms that regulate MMPs, TIMPs and collagens. We show that in certain cancer types, epigenetic signatures of selected MMPs exhibit stem cell-like characteristics. Epigenetic mechanisms appear to play an especially important role in glioblastoma multiforme. Glioblastomas/gliomas synthesize de novo and then deposit collagens into the brain parenchyma. The collagen deposition, combined with an enhanced MMP activity in glioblastomas/gliomas, facilitates rapid invasion of tumor cells through the brain. It is tempting to hypothesize that the epigenetic mechanisms which control MMPs, TIMPs and collagens and, consequently, tumor cell invasion, represent promising drug targets and that in the near future these targets will be challenged pharmacologically.
SUBMITTER: Chernov AV
PROVIDER: S-EPMC3138141 | biostudies-literature | 2011 Jun
REPOSITORIES: biostudies-literature
ACCESS DATA