Soluble oligomers of amyloid-? peptide disrupt membrane trafficking of ?-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptor contributing to early synapse dysfunction.
Ontology highlight
ABSTRACT: ?-Amyloid (A?), a peptide generated from the amyloid precursor protein, is widely believed to underlie the pathophysiology of Alzheimer disease (AD). Emerging evidences suggest that soluble A? oligomers adversely affect synaptic function, leading to cognitive failure associated with AD. The A?-induced synaptic dysfunction has been attributed to the synaptic removal of ?-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptors (AMPARs). However, the molecular mechanisms underlying the loss of AMPAR induced by A? at synapses are largely unknown. In this study we have examined the effect of A? oligomers on phosphorylated GluA1 at serine 845, a residue that plays an essential role in the trafficking of AMPARs toward extrasynaptic sites and the subsequent delivery to synapses during synaptic plasticity events. We found that A? oligomers reduce basal levels of Ser-845 phosphorylation and surface expression of AMPARs affecting AMPAR subunit composition. A?-induced GluA1 dephosphorylation and reduced receptor surface levels are mediated by an increase in calcium influx into neurons through ionotropic glutamate receptors and activation of the calcium-dependent phosphatase calcineurin. Moreover, A? oligomers block the extrasynaptic delivery of AMPARs induced by chemical synaptic potentiation. In addition, reduced levels of total and phosphorylated GluA1 are associated with initial spatial memory deficits in a transgenic mouse model of AD. These findings indicate that A? oligomers could act as a synaptic depressor affecting the mechanisms involved in the targeting of AMPARs to the synapses during early stages of the disease.
SUBMITTER: Minano-Molina AJ
PROVIDER: S-EPMC3149325 | biostudies-literature | 2011 Aug
REPOSITORIES: biostudies-literature
ACCESS DATA