Project description:Many reactions within the cell occur only in specific intracellular regions. Such local reaction networks give rise to microdomains of activated signaling components. The dynamics of microdomains can be visualized by live cell imaging. Computational models using partial differential equations provide mechanistic insights into the interacting factors that control microdomain dynamics. The mathematical models show that, for membrane-initiated signaling, the ratio of the surface area of the plasma membrane to the volume of the cytoplasm, the topology of the signaling network, the negative regulators, and kinetic properties of key components together define microdomain dynamics. Thus, patterns of locally restricted signaling reaction systems can be considered an emergent property of the cell.
Project description:BackgroundTo enable automatic searches, alignments, and model combination, the elements of systems biology models need to be compared and matched across models. Elements can be identified by machine-readable biological annotations, but assigning such annotations and matching non-annotated elements is tedious work and calls for automation.ResultsA new method called "semantic propagation" allows the comparison of model elements based not only on their own annotations, but also on annotations of surrounding elements in the network. One may either propagate feature vectors, describing the annotations of individual elements, or quantitative similarities between elements from different models. Based on semantic propagation, we align partially annotated models and find annotations for non-annotated model elements.ConclusionsSemantic propagation and model alignment are included in the open-source library semanticSBML, available on sourceforge. Online services for model alignment and for annotation prediction can be used at http://www.semanticsbml.org.
Project description:Delineating design principles of biological systems by reconstitution of purified components offers a platform to gauge the influence of critical physicochemical parameters on minimal biological systems of reduced complexity. Here we unravel the effect of strong reversible inhibitors on the spatiotemporal propagation of enzymatic reactions in a confined environment in vitro. We use micropatterned, enzyme-laden agarose gels which are stamped on polyacrylamide films containing immobilized substrates and reversible inhibitors. Quantitative fluorescence imaging combined with detailed numerical simulations of the reaction-diffusion process reveal that a shallow gradient of enzyme is converted into a steep product gradient by addition of strong inhibitors, consistent with a mathematical model of molecular titration. The results confirm that ultrasensitive and threshold effects at the molecular level can convert a graded input signal to a steep spatial response at macroscopic length scales.
Project description:The signal-response characteristics of a living cell are determined by complex networks of interacting genes, proteins, and metabolites. Understanding how cells respond to specific challenges, how these responses are contravened in diseased cells, and how to intervene pharmacologically in the decision-making processes of cells requires an accurate theory of the information-processing capabilities of macromolecular regulatory networks. Adopting an engineer's approach to control systems, we ask whether realistic cellular control networks can be decomposed into simple regulatory motifs that carry out specific functions in a cell. We show that such functional motifs exist and review the experimental evidence that they control cellular responses as expected.
Project description:The ability to spatially pattern biochemical signals into nanofibrous materials using thiol-ene reactions of thiolated molecules to presented norbornene groups is demonstrated. This approach is used to pattern three molecules independently within one scaffold, to pattern molecules through the depth of a scaffold, and to spatially control cell adhesion and morphology.
Project description:Although the spatially discrete reaction-diffusion equation is often used to describe biological processes, the effect of diffusion in this framework is not fully understood. In the spatially continuous case, the incorporation of diffusion can cause blow-up with respect to the L∞ norm, and criteria exist to determine whether the system is bounded for all time. However, no equivalent criteria exist for the discrete reaction-diffusion system. Due to the possible dynamical differences between these two system types and the advantage of using the spatially discrete representation to describe biological processes, it is worth examining the discrete system independently of the continuous system. Therefore, the focus of this paper is on determining sufficient conditions to guarantee that the discrete reaction-diffusion system is bounded for all time. We consider reaction-diffusion systems on a 1D domain with homogeneous Neumann boundary conditions and nonnegative initial data and solutions. We define a Lyapunov-like function and show that its existence guarantees that the discrete reaction-diffusion system is bounded. These results are considered in the context of four example systems for which Lyapunov-like functions can and cannot be found.
Project description:Rhea (http://www.rhea-db.org) is a comprehensive and non-redundant resource of over 11 000 expert-curated biochemical reactions that uses chemical entities from the ChEBI ontology to represent reaction participants. Originally designed as an annotation vocabulary for the UniProt Knowledgebase (UniProtKB), Rhea also provides reaction data for a range of other core knowledgebases and data repositories including ChEBI and MetaboLights. Here we describe recent developments in Rhea, focusing on a new resource description framework representation of Rhea reaction data and an SPARQL endpoint (https://sparql.rhea-db.org/sparql) that provides access to it. We demonstrate how federated queries that combine the Rhea SPARQL endpoint and other SPARQL endpoints such as that of UniProt can provide improved metabolite annotation and support integrative analyses that link the metabolome through the proteome to the transcriptome and genome. These developments will significantly boost the utility of Rhea as a means to link chemistry and biology for a more holistic understanding of biological systems and their function in health and disease.
Project description:Switch like responses appear as common strategies in the regulation of cellular systems. Here we present a method to characterize bistable regimes in biochemical reaction networks that can be of use to both direct and reverse engineering of biological switches. In the design of a synthetic biological switch, it is important to study the capability for bistability of the underlying biochemical network structure. Chemical Reaction Network Theory (CRNT) may help at this level to decide whether a given network has the capacity for multiple positive equilibria, based on their structural properties. However, in order to build a working switch, we also need to ensure that the bistability property is robust, by studying the conditions leading to the existence of two different steady states. In the reverse engineering of biological switches, knowledge collected about the bistable regimes of the underlying potential model structures can contribute at the model identification stage to a drastic reduction of the feasible region in the parameter space of search. In this work, we make use and extend previous results of the CRNT, aiming not only to discriminate whether a biochemical reaction network can exhibit multiple steady states, but also to determine the regions within the whole space of parameters capable of producing multistationarity. To that purpose we present and justify a condition on the parameters of biochemical networks for the appearance of multistationarity, and propose an efficient and reliable computational method to check its satisfaction through the parameter space.
Project description:The flow of information within a cell is governed by a series of protein-protein interactions that can be described as a reaction network. Mathematical models of biochemical reaction networks can be constructed by repetitively applying specific rules that define how reactants interact and what new species are formed on reaction. To aid in understanding the underlying biochemistry, timescale analysis is one method developed to prune the size of the reaction network. In this work, we extend the methods associated with timescale analysis to reaction rules instead of the species contained within the network. To illustrate this approach, we applied timescale analysis to a simple receptor-ligand binding model and a rule-based model of interleukin-12 (IL-12) signaling in naïve CD4+ T cells. The IL-12 signaling pathway includes multiple protein-protein interactions that collectively transmit information; however, the level of mechanistic detail sufficient to capture the observed dynamics has not been justified based on the available data. The analysis correctly predicted that reactions associated with Janus Kinase 2 and Tyrosine Kinase 2 binding to their corresponding receptor exist at a pseudo-equilibrium. By contrast, reactions associated with ligand binding and receptor turnover regulate cellular response to IL-12. An empirical Bayesian approach was used to estimate the uncertainty in the timescales. This approach complements existing rank- and flux-based methods that can be used to interrogate complex reaction networks. Ultimately, timescale analysis of rule-based models is a computational tool that can be used to reveal the biochemical steps that regulate signaling dynamics.
Project description:BACKGROUND: In this paper we propose a model reduction method for biochemical reaction networks governed by a variety of reversible and irreversible enzyme kinetic rate laws, including reversible Michaelis-Menten and Hill kinetics. The method proceeds by a stepwise reduction in the number of complexes, defined as the left and right-hand sides of the reactions in the network. It is based on the Kron reduction of the weighted Laplacian matrix, which describes the graph structure of the complexes and reactions in the network. It does not rely on prior knowledge of the dynamic behaviour of the network and hence can be automated, as we demonstrate. The reduced network has fewer complexes, reactions, variables and parameters as compared to the original network, and yet the behaviour of a preselected set of significant metabolites in the reduced network resembles that of the original network. Moreover the reduced network largely retains the structure and kinetics of the original model. RESULTS: We apply our method to a yeast glycolysis model and a rat liver fatty acid beta-oxidation model. When the number of state variables in the yeast model is reduced from 12 to 7, the difference between metabolite concentrations in the reduced and the full model, averaged over time and species, is only 8%. Likewise, when the number of state variables in the rat-liver beta-oxidation model is reduced from 42 to 29, the difference between the reduced model and the full model is 7.5%. CONCLUSIONS: The method has improved our understanding of the dynamics of the two networks. We found that, contrary to the general disposition, the first few metabolites which were deleted from the network during our stepwise reduction approach, are not those with the shortest convergence times. It shows that our reduction approach performs differently from other approaches that are based on time-scale separation. The method can be used to facilitate fitting of the parameters or to embed a detailed model of interest in a more coarse-grained yet realistic environment.