Unknown

Dataset Information

0

Disease-related amyloidogenic variants of human lysozyme trigger the unfolded protein response and disturb eye development in Drosophila melanogaster.


ABSTRACT: We have created a Drosophila model of lysozyme amyloidosis to investigate the in vivo behavior of disease-associated variants. To achieve this objective, wild-type (WT) protein and the amyloidogenic variants F57I and D67H were expressed in Drosophila melanogaster using the UAS-gal4 system and both the ubiquitous and retinal expression drivers Act5C-gal4 and gmr-gal4. The nontransgenic w(1118) Drosophila line was used as a control throughout. We utilized ELISA experiments to probe lysozyme protein levels, scanning electron microscopy for eye phenotype classification, and immunohistochemistry to detect the unfolded protein response (UPR) activation. We observed that expressing the destabilized F57I and D67H lysozymes triggers UPR activation, resulting in degradation of these variants, whereas the WT lysozyme is secreted into the fly hemolymph. Indeed, the level of WT was up to 17 times more abundant than the variant proteins. In addition, the F57I variant gave rise to a significant disruption of the eye development, and this correlated to pronounced UPR activation. These results support the concept that the onset of familial amyloid disease is linked to an inability of the UPR to degrade completely the amyloidogenic lysozymes prior to secretion, resulting in secretion of these destabilized variants, thereby leading to deposition and associated organ damage.

SUBMITTER: Kumita JR 

PROVIDER: S-EPMC3250245 | biostudies-literature | 2012 Jan

REPOSITORIES: biostudies-literature

altmetric image

Publications

Disease-related amyloidogenic variants of human lysozyme trigger the unfolded protein response and disturb eye development in Drosophila melanogaster.

Kumita Janet R JR   Helmfors Linda L   Williams Jocy J   Luheshi Leila M LM   Menzer Linda L   Dumoulin Mireille M   Lomas David A DA   Crowther Damian C DC   Dobson Christopher M CM   Brorsson Ann-Christin AC  

FASEB journal : official publication of the Federation of American Societies for Experimental Biology 20110929 1


We have created a Drosophila model of lysozyme amyloidosis to investigate the in vivo behavior of disease-associated variants. To achieve this objective, wild-type (WT) protein and the amyloidogenic variants F57I and D67H were expressed in Drosophila melanogaster using the UAS-gal4 system and both the ubiquitous and retinal expression drivers Act5C-gal4 and gmr-gal4. The nontransgenic w(1118) Drosophila line was used as a control throughout. We utilized ELISA experiments to probe lysozyme protei  ...[more]

Similar Datasets

2020-07-19 | PXD018001 | Pride
2024-08-09 | PXD044845 | Pride
| S-EPMC5132093 | biostudies-literature
| S-EPMC7312876 | biostudies-literature
| S-EPMC9223523 | biostudies-literature
| S-EPMC65094 | biostudies-literature
| S-EPMC4790953 | biostudies-literature
| S-EPMC4856093 | biostudies-literature
| S-EPMC3360684 | biostudies-literature
| S-EPMC3832283 | biostudies-literature