Transcriptional activation by mitochondrial transcription factor A involves preferential distortion of promoter DNA.
Ontology highlight
ABSTRACT: Mitochondrial transcription factor A (mtTFA/TFAM) is a nucleus-encoded, high-mobility-group-box (HMG-box) protein that regulates transcription of the mitochondrial genome by specifically recognizing light-strand and heavy-strand promoters (LSP, HSP1). TFAM also binds mitochondrial DNA in a non-sequence specific (NSS) fashion and facilitates its packaging into nucleoid structures. However, the requirement and contribution of DNA-bending for these two different binding modes has not been addressed in detail, which prompted this comparison of binding and bending properties of TFAM on promoter and non-promoter DNA. Promoter DNA increased the stability of TFAM to a greater degree than non-promoter DNA. However, the thermodynamic properties of DNA binding for TFAM with promoter and non-specific (NS) DNA were similar to each other and to other NSS HMG-box proteins. Fluorescence resonance energy transfer assays showed that TFAM bends promoter DNA to a greater degree than NS DNA. In contrast, TFAM lacking the C-terminal tail distorted both promoter and non-promoter DNA to a significantly reduced degree, corresponding with markedly decreased transcriptional activation capacity at LSP and HSP1 in vitro. Thus, the enhanced bending of promoter DNA imparted by the C-terminal tail is a critical component of the ability of TFAM to activate promoter-specific initiation by the core mitochondrial transcription machinery.
SUBMITTER: Malarkey CS
PROVIDER: S-EPMC3258160 | biostudies-literature | 2012 Jan
REPOSITORIES: biostudies-literature
ACCESS DATA