Unknown

Dataset Information

0

Multi-isotope imaging mass spectrometry reveals slow protein turnover in hair-cell stereocilia.


ABSTRACT: Hair cells of the inner ear are not normally replaced during an animal's life, and must continually renew components of their various organelles. Among these are the stereocilia, each with a core of several hundred actin filaments that arise from their apical surfaces and that bear the mechanotransduction apparatus at their tips. Actin turnover in stereocilia has previously been studied by transfecting neonatal rat hair cells in culture with a ?-actin-GFP fusion, and evidence was found that actin is replaced, from the top down, in 2-3 days. Overexpression of the actin-binding protein espin causes elongation of stereocilia within 12-24 hours, also suggesting rapid regulation of stereocilia lengths. Similarly, the mechanosensory 'tip links' are replaced in 5-10 hours after cleavage in chicken and mammalian hair cells. In contrast, turnover in chick stereocilia in vivo is much slower. It might be that only certain components of stereocilia turn over quickly, that rapid turnover occurs only in neonatal animals, only in culture, or only in response to a challenge like breakage or actin overexpression. Here we quantify protein turnover by feeding animals with a (15)N-labelled precursor amino acid and using multi-isotope imaging mass spectrometry to measure appearance of new protein. Surprisingly, in adult frogs and mice and in neonatal mice, in vivo and in vitro, the stereocilia were remarkably stable, incorporating newly synthesized protein at <10% per day. Only stereocilia tips had rapid turnover and no treadmilling was observed. Other methods confirmed this: in hair cells expressing ?-actin-GFP we bleached fiducial lines across hair bundles, but they did not move in 6 days. When we stopped expression of ?- or ?-actin with tamoxifen-inducible recombination, neither actin isoform left the stereocilia, except at the tips. Thus, rapid turnover in stereocilia occurs only at the tips and not by a treadmilling process.

SUBMITTER: Zhang DS 

PROVIDER: S-EPMC3267870 | biostudies-literature | 2012 Jan

REPOSITORIES: biostudies-literature

altmetric image

Publications

Multi-isotope imaging mass spectrometry reveals slow protein turnover in hair-cell stereocilia.

Zhang Duan-Sun DS   Piazza Valeria V   Perrin Benjamin J BJ   Rzadzinska Agnieszka K AK   Poczatek J Collin JC   Wang Mei M   Prosser Haydn M HM   Ervasti James M JM   Corey David P DP   Lechene Claude P CP  

Nature 20120115 7382


Hair cells of the inner ear are not normally replaced during an animal's life, and must continually renew components of their various organelles. Among these are the stereocilia, each with a core of several hundred actin filaments that arise from their apical surfaces and that bear the mechanotransduction apparatus at their tips. Actin turnover in stereocilia has previously been studied by transfecting neonatal rat hair cells in culture with a β-actin-GFP fusion, and evidence was found that acti  ...[more]

Similar Datasets

| S-EPMC3428319 | biostudies-literature
| S-EPMC5482209 | biostudies-literature
| S-EPMC3267887 | biostudies-literature
| S-EPMC8221415 | biostudies-literature
| S-EPMC3276494 | biostudies-literature
| S-EPMC7039203 | biostudies-literature
2016-11-15 | GSE89818 | GEO
| S-EPMC8290328 | biostudies-literature
| S-EPMC5580901 | biostudies-literature
| S-EPMC2453082 | biostudies-other