Unknown

Dataset Information

0

Dissociation of inositol-requiring enzyme (IRE1?)-mediated c-Jun N-terminal kinase activation from hepatic insulin resistance in conditional X-box-binding protein-1 (XBP1) knock-out mice.


ABSTRACT: Hepatic insulin resistance has been attributed to both increased endoplasmic reticulum (ER) stress and accumulation of intracellular lipids, specifically diacylglycerol (DAG). The ER stress response protein, X-box-binding protein-1 (XBP1), was recently shown to regulate hepatic lipogenesis, suggesting that hepatic insulin resistance in models of ER stress may result from defective lipid storage, as opposed to ER-specific stress signals. Studies were designed to dissociate liver lipid accumulation and activation of ER stress signaling pathways, which would allow us to delineate the individual contributions of ER stress and hepatic lipid content to the pathogenesis of hepatic insulin resistance. Conditional XBP1 knock-out (XBP1?) and control mice were fed fructose chow for 1 week. Determinants of whole-body energy balance, weight, and composition were determined. Hepatic lipids including triglyceride, DAGs, and ceramide were measured, alongside markers of ER stress. Whole-body and tissue-specific insulin sensitivity were determined by hyperinsulinemic-euglycemic clamp studies. Hepatic ER stress signaling was increased in fructose chow-fed XBP1? mice as reflected by increased phosphorylated eIF2?, HSPA5 mRNA, and a 2-fold increase in hepatic JNK activity. Despite JNK activation, XBP1? displayed increased hepatic insulin sensitivity during hyperinsulinemic-euglycemic clamp studies, which was associated with increased insulin-stimulated IRS2 tyrosine phosphorylation, reduced hepatic DAG content, and reduced PKC? activity. These studies demonstrate that ER stress and IRE1?-mediated JNK activation can be disassociated from hepatic insulin resistance and support the hypothesis that hepatic insulin resistance in models of ER stress may be secondary to ER stress modulation of hepatic lipogenesis.

SUBMITTER: Jurczak MJ 

PROVIDER: S-EPMC3268415 | biostudies-literature | 2012 Jan

REPOSITORIES: biostudies-literature

altmetric image

Publications

Dissociation of inositol-requiring enzyme (IRE1α)-mediated c-Jun N-terminal kinase activation from hepatic insulin resistance in conditional X-box-binding protein-1 (XBP1) knock-out mice.

Jurczak Michael J MJ   Lee Ann-Hwee AH   Jornayvaz Francois R FR   Lee Hui-Young HY   Birkenfeld Andreas L AL   Guigni Blas A BA   Kahn Mario M   Samuel Varman T VT   Glimcher Laurie H LH   Shulman Gerald I GI  

The Journal of biological chemistry 20111128 4


Hepatic insulin resistance has been attributed to both increased endoplasmic reticulum (ER) stress and accumulation of intracellular lipids, specifically diacylglycerol (DAG). The ER stress response protein, X-box-binding protein-1 (XBP1), was recently shown to regulate hepatic lipogenesis, suggesting that hepatic insulin resistance in models of ER stress may result from defective lipid storage, as opposed to ER-specific stress signals. Studies were designed to dissociate liver lipid accumulatio  ...[more]

Similar Datasets

| S-EPMC4215236 | biostudies-literature
| S-EPMC8394251 | biostudies-literature
| S-EPMC8558229 | biostudies-literature
| S-EPMC5618002 | biostudies-literature
| S-EPMC7150863 | biostudies-literature
| S-EPMC9472280 | biostudies-literature
| S-EPMC7784033 | biostudies-literature
| S-EPMC5961092 | biostudies-literature
| S-EPMC3854994 | biostudies-literature
| S-EPMC4463201 | biostudies-literature