Unknown

Dataset Information

0

Impact of cross-protective vaccines on epidemiological and evolutionary dynamics of influenza.


ABSTRACT: Large-scale immunization has profoundly impacted control of many infectious diseases such as measles and smallpox because of the ability of vaccination campaigns to maintain long-term herd immunity and, hence, indirect protection of the unvaccinated. In the case of human influenza, such potential benefits of mass vaccination have so far proved elusive. The central difficulty is a considerable viral capacity for immune escape; new pandemic variants, as well as viral escape mutants in seasonal influenza, compromise the buildup of herd immunity from natural infection or deployment of current vaccines. Consequently, most current influenza vaccination programs focus mainly on protection of specific risk groups, rather than mass prophylactic protection. Here, we use epidemiological models to show that emerging vaccine technologies, aimed at broad-spectrum protection, could qualitatively alter this picture. We demonstrate that sustained immunization with such vaccines could--through potentially lowering transmission rates and improving herd immunity--significantly moderate both influenza pandemic and seasonal epidemics. More subtly, phylodynamic models indicate that widespread cross-protective immunization could slow the antigenic evolution of seasonal influenza; these effects have profound implications for a transition to mass vaccination strategies against human influenza, and for the management of antigenically variable viruses in general.

SUBMITTER: Arinaminpathy N 

PROVIDER: S-EPMC3286944 | biostudies-literature | 2012 Feb

REPOSITORIES: biostudies-literature

altmetric image

Publications

Impact of cross-protective vaccines on epidemiological and evolutionary dynamics of influenza.

Arinaminpathy Nimalan N   Ratmann Oliver O   Koelle Katia K   Epstein Suzanne L SL   Price Graeme E GE   Viboud Cecile C   Miller Mark A MA   Grenfell Bryan T BT  

Proceedings of the National Academy of Sciences of the United States of America 20120207 8


Large-scale immunization has profoundly impacted control of many infectious diseases such as measles and smallpox because of the ability of vaccination campaigns to maintain long-term herd immunity and, hence, indirect protection of the unvaccinated. In the case of human influenza, such potential benefits of mass vaccination have so far proved elusive. The central difficulty is a considerable viral capacity for immune escape; new pandemic variants, as well as viral escape mutants in seasonal inf  ...[more]

Similar Datasets

| S-EPMC9228933 | biostudies-literature
| S-EPMC3948190 | biostudies-literature
| S-EPMC4552379 | biostudies-literature
| S-EPMC3078862 | biostudies-literature
| S-EPMC6189474 | biostudies-literature
| S-EPMC10974465 | biostudies-literature
| S-EPMC8647717 | biostudies-literature
| S-EPMC6789917 | biostudies-literature
| S-EPMC8158873 | biostudies-literature
| S-EPMC3137593 | biostudies-literature